ترغب بنشر مسار تعليمي؟ اضغط هنا

Learning a Proposal Classifier for Multiple Object Tracking

143   0   0.0 ( 0 )
 نشر من قبل Peng Dai
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The recent trend in multiple object tracking (MOT) is heading towards leveraging deep learning to boost the tracking performance. However, it is not trivial to solve the data-association problem in an end-to-end fashion. In this paper, we propose a novel proposal-based learnable framework, which models MOT as a proposal generation, proposal scoring and trajectory inference paradigm on an affinity graph. This framework is similar to the two-stage object detector Faster RCNN, and can solve the MOT problem in a data-driven way. For proposal generation, we propose an iterative graph clustering method to reduce the computational cost while maintaining the quality of the generated proposals. For proposal scoring, we deploy a trainable graph-convolutional-network (GCN) to learn the structural patterns of the generated proposals and rank them according to the estimated quality scores. For trajectory inference, a simple deoverlapping strategy is adopted to generate tracking output while complying with the constraints that no detection can be assigned to more than one track. We experimentally demonstrate that the proposed method achieves a clear performance improvement in both MOTA and IDF1 with respect to previous state-of-the-art on two public benchmarks. Our code is available at https://github.com/daip13/LPC_MOT.git.

قيم البحث

اقرأ أيضاً

98 - Qiang Wang , Yun Zheng , Pan Pan 2021
Recent works have shown that convolutional networks have substantially improved the performance of multiple object tracking by simultaneously learning detection and appearance features. However, due to the local perception of the convolutional networ k structure itself, the long-range dependencies in both the spatial and temporal cannot be obtained efficiently. To incorporate the spatial layout, we propose to exploit the local correlation module to model the topological relationship between targets and their surrounding environment, which can enhance the discriminative power of our model in crowded scenes. Specifically, we establish dense correspondences of each spatial location and its context, and explicitly constrain the correlation volumes through self-supervised learning. To exploit the temporal context, existing approaches generally utilize two or more adjacent frames to construct an enhanced feature representation, but the dynamic motion scene is inherently difficult to depict via CNNs. Instead, our paper proposes a learnable correlation operator to establish frame-to-frame matches over convolutional feature maps in the different layers to align and propagate temporal context. With extensive experimental results on the MOT datasets, our approach demonstrates the effectiveness of correlation learning with the superior performance and obtains state-of-the-art MOTA of 76.5% and IDF1 of 73.6% on MOT17.
Similarity learning has been recognized as a crucial step for object tracking. However, existing multiple object tracking methods only use sparse ground truth matching as the training objective, while ignoring the majority of the informative regions on the images. In this paper, we present Quasi-Dense Similarity Learning, which densely samples hundreds of region proposals on a pair of images for contrastive learning. We can directly combine this similarity learning with existing detection methods to build Quasi-Dense Tracking (QDTrack) without turning to displacement regression or motion priors. We also find that the resulting distinctive feature space admits a simple nearest neighbor search at the inference time. Despite its simplicity, QDTrack outperforms all existing methods on MOT, BDD100K, Waymo, and TAO tracking benchmarks. It achieves 68.7 MOTA at 20.3 FPS on MOT17 without using external training data. Compared to methods with similar detectors, it boosts almost 10 points of MOTA and significantly decreases the number of ID switches on BDD100K and Waymo datasets. Our code and trained models are available at http://vis.xyz/pub/qdtrack.
In real applications, object detectors based on deep networks still face challenges of the large domain gap between the labeled training data and unlabeled testing data. To reduce the gap, recent techniques are proposed by aligning the image/instance -level features between source and unlabeled target domains. However, these methods suffer from the suboptimal problem mainly because of ignoring the category information of object instances. To tackle this issue, we develop a fine-grained domain alignment approach with a well-designed domain classifier bank that achieves the instance-level alignment respecting to their categories. Specifically, we first employ the mean teacher paradigm to generate pseudo labels for unlabeled samples. Then we implement the class-level domain classifiers and group them together, called domain classifier bank, in which each domain classifier is responsible for aligning features of a specific class. We assemble the bare object detector with the proposed fine-grained domain alignment mechanism as the adaptive detector, and optimize it with a developed crossed adaptive weighting mechanism. Extensive experiments on three popular transferring benchmarks demonstrate the effectiveness of our method and achieve the new remarkable state-of-the-arts.
133 - Lijun Wang , Yanting Zhu , Jue Shi 2020
Multiple Object Tracking (MOT) detects the trajectories of multiple objects given an input video, and it has become more and more popular in various research and industry areas, such as cell tracking for biomedical research and human tracking in vide o surveillance. We target at the general MOT problem regardless of the object appearance. The appearance-free tripartite matching is proposed to avoid the irregular velocity problem of traditional bipartite matching. The tripartite matching is formulated as maximizing the likelihood of the state vectors constituted of the position and velocity of objects, and a dynamic programming algorithm is employed to solve such maximum likelihood estimate (MLE). To overcome the high computational cost induced by the vast search space of dynamic programming, we decompose the space by the number of disappearing objects and propose a reduced-space approach by truncating the decomposition. Extensive simulations have shown the superiority and efficiency of our proposed method. We also applied our method to track the motion of natural killer cells around tumor cells in a cancer research.
286 - Peize Sun , Jinkun Cao , Yi Jiang 2020
In this work, we propose TransTrack, a simple but efficient scheme to solve the multiple object tracking problems. TransTrack leverages the transformer architecture, which is an attention-based query-key mechanism. It applies object features from the previous frame as a query of the current frame and introduces a set of learned object queries to enable detecting new-coming objects. It builds up a novel joint-detection-and-tracking paradigm by accomplishing object detection and object association in a single shot, simplifying complicated multi-step settings in tracking-by-detection methods. On MOT17 and MOT20 benchmark, TransTrack achieves 74.5% and 64.5% MOTA, respectively, competitive to the state-of-the-art methods. We expect TransTrack to provide a novel perspective for multiple object tracking. The code is available at: url{https://github.com/PeizeSun/TransTrack}.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا