ترغب بنشر مسار تعليمي؟ اضغط هنا

Helicoids in chiral liquid crystals under external fields

77   0   0.0 ( 0 )
 نشر من قبل Carlos Naya
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Cholesteric Liquid Crystals (CLCs), subject to externally applied magnetic fields and confined between two parallel planar surfaces with strong homeotropic anchoring conditions, are found to undergo transitions to different types of helicoidal configurations with disclinations. Analytical and numerical studies are performed in order to characterise their properties. In particular, we produce a phase diagram for the transitions from the nematic state to the helicoidal phases in terms of the molecular chirality and the strength of the applied magnetic field.



قيم البحث

اقرأ أيضاً

We analyse a recent generalised free-energy for liquid crystals posited by Virga and falling in the class of quartic functionals in the spatial gradients of the nematic director. We review some known interesting solutions, i. e., uniform heliconical structures, and we find new liquid crystal configurations, which closely resemble some novel, experimentally detected, structures called Skyrmion tubes. These new configurations are characterised by a localised pattern given by the variation of the conical angle. We study the equilibrium differential equations and find numerical solutions and analytical approximations.
We analyze the interaction with uniform external fields of nematic liquid crystals within a recent generalized free-energy posited by Virga and falling in the class of quartic functionals in the spatial gradients of the nematic director. We review so me known interesting solutions, i. e., uniform heliconical structures, which correspond to the so-called twist-bend nematic phase and we also study the transition between this phase and the standard uniform nematic one. Moreover, we find liquid crystal configurations, which closely resemble some novel, experimentally detected, structures called Skyrmion Tubes. Skyrmion Tubes are characterized by a localized cylindrically-symmetric pattern surrounded by either twist-bend or uniform nematic phase. We study the equilibrium differential equations and find numerical solutions and analytical approximations.
384 - J. Dzubiella , H. Loewen 2002
The influence of an external field acting differently on the two constituents of a binary colloidal mixture performing Brownian dynamics is investigated by computer simulations and a simple theory. In our model, one half of the particles ($A$-particl es) are pulled by an external force ${vec F}^{(A)}$ while the other half of them ($B$-particles) are pulled by an external force ${vec F}^{(B)}$. If ${vec F}^{(A)}$ and ${vec F}^{(B)}$ are parallel and the field-free state is a mixed fluid, previous simulations (J. Dzubiella et al, Phys. Rev. E {bf 65} 021402 (2002)) have shown a nonequilibrium pattern formation involving lanes of $A$ or $B$ particles only which are sliding against each other in the direction of the external forces. In this paper, we generalize the situation both to non-parallel external forces and to field-free crystalline states. For non-parallel forces, lane formation is also observed but with an orientation {it tilted} with respect to the external forces. If the field-free state is crystalline, a continuous increase of the parallel external forces yields a novel {it reentrant freezing} behavior: the crystal first melts mechanically via the external force and then recrystallizes into demixed crystalline lanes sliding against each other.
The director configuration of disclination lines in nematic liquid crystals in the presence of an external magnetic field is evaluated. Our method is a combination of a polynomial expansion for the director and of further analytical approximations wh ich are tested against a numerical shooting method. The results are particularly simple when the elastic constants are equal, but we discuss the general case of elastic anisotropy. The director field is continuous everywhere apart from a straight line segment whose length depends on the value of the magnetic field. This indicates the possibility of an elongated defect core for disclination lines in nematics due to an external magnetic field.
119 - T. Nomura , A. Ikeda , M. Gen 2021
We studied the acoustic properties of liquid oxygen up to 90 T by means of ultrasound measurements. We observed a monotonic decrease of the sound velocity and an asymptotic increase of the sound attenuation when applying magnetic fields. The unusual attenuation, twenty times as large as the zero-field value, suggests strong fluctuations of the local molecular arrangement. We point out that the observed fluctuations are related to a liquid-liquid transition or crossover, from a small-magnetization to a large-magnetization liquid, which is characterized by a local-structure rearrangement. To investigate higher-field properties of liquid oxygen, we performed single-turn-coil experiments up to 180 T by means of the acoustic, dilatometric, magnetic, and optical techniques. We observed only monotonic changes of these properties, reflecting the absence of the proposed liquid-liquid transition in our experimental conditions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا