ﻻ يوجد ملخص باللغة العربية
Robust fractional charge localized at disclination defects has been recently found as a topological response in $C_{6}$ symmetric 2D topological crystalline insulators (TCIs). In this article, we thoroughly investigate the fractional charge on disclinations in $C_n$ symmetric TCIs, with or without time reversal symmetry, and including spinless and spin-$frac{1}{2}$ cases. We compute the fractional disclination charges from the Wannier representations in real space and use band representation theory to construct topological indices of the fractional disclination charge for all $2D$ TCIs that admit a (generalized) Wannier representation. We find the disclination charge is fractionalized in units of $frac{e}{n}$ for $C_n$ symmetric TCIs; and for spin-$frac{1}{2}$ TCIs, with additional time reversal symmetry, the disclination charge is fractionalized in units of $frac{2e}{n}$. We furthermore prove that with electron-electron interactions that preserve the $C_n$ symmetry and many-body bulk gap, though we can deform a TCI into another which is topologically distinct in the free fermion case, the fractional disclination charge determined by our topological indices will not change in this process. Moreover, we use an algebraic technique to generalize the indices for TCIs with non-zero Chern numbers, where a Wannier representation is not applicable. With the inclusion of the Chern number, our generalized fractional disclination indices apply for all $C_n$ symmetric TCIs. Finally, we briefly discuss the connection between the Chern number dependence of our generalized indices and the Wen-Zee term.
In this paper, we derive a general formula for the quantized fractional corner charge in two-dimensional C_n-symmetric higher-order topological insulators. We assume that the electronic states can be described by the Wannier functions and that the ed
In the presence of crystalline symmetries, certain topological insulators present a filling anomaly: a mismatch between the number of electrons in an energy band and the number of electrons required for charge neutrality. In this paper, we show that
Based on first-principles calculations and symmetry analysis, we predict atomically thin ($1-N$ layers) 2H group-VIB TMDs $MX_2$ ($M$ = Mo, W; $X$ = S, Se, Te) are large-gap higher-order topological crystalline insulators protected by $C_3$ rotation
We study two-electron states confined in two coupled quantum dots formed by a short-range potential in a two-dimensional topological insulator. It is shown that there is a fairly wide range of the system parameters, where the ground state is a triple
We consider transport properties of a two dimensional topological insulator in a double quantum point contact geometry in presence of a time-dependent external field. In the proposed setup an external gate is placed above a single constriction and it