ﻻ يوجد ملخص باللغة العربية
This paper provides a general framework to study the effect of sampling properties of training data on the generalization error of the learned machine learning (ML) models. Specifically, we propose a new spectral analysis of the generalization error, expressed in terms of the power spectra of the sampling pattern and the function involved. The framework is build in the Euclidean space using Fourier analysis and establishes a connection between some high dimensional geometric objects and optimal spectral form of different state-of-the-art sampling patterns. Subsequently, we estimate the expected error bounds and convergence rate of different state-of-the-art sampling patterns, as the number of samples and dimensions increase. We make several observations about generalization error which are valid irrespective of the approximation scheme (or learning architecture) and training (or optimization) algorithms. Our result also sheds light on ways to formulate design principles for constructing optimal sampling methods for particular problems.
Existing work on understanding deep learning often employs measures that compress all data-dependent information into a few numbers. In this work, we adopt a perspective based on the role of individual examples. We introduce a measure of the computat
We show that a large class of Estimation of Distribution Algorithms, including, but not limited to, Covariance Matrix Adaption, can be written as a Monte Carlo Expectation-Maximization algorithm, and as exact EM in the limit of infinite samples. Beca
Gated recurrent units (GRUs) are specialized memory elements for building recurrent neural networks. Despite their incredible success on various tasks, including extracting dynamics underlying neural data, little is understood about the specific dyna
The idea behind the emph{unsupervised} learning of emph{disentangled} representations is that real-world data is generated by a few explanatory factors of variation which can be recovered by unsupervised learning algorithms. In this paper, we provide
One of the key drivers of complexity in the classical (stochastic) multi-armed bandit (MAB) problem is the difference between mean rewards in the top two arms, also known as the instance gap. The celebrated Upper Confidence Bound (UCB) policy is amon