ترغب بنشر مسار تعليمي؟ اضغط هنا

SParC: Cross-Domain Semantic Parsing in Context

87   0   0.0 ( 0 )
 نشر من قبل Tao Yu
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We present SParC, a dataset for cross-domainSemanticParsing inContext that consists of 4,298 coherent question sequences (12k+ individual questions annotated with SQL queries). It is obtained from controlled user interactions with 200 complex databases over 138 domains. We provide an in-depth analysis of SParC and show that it introduces new challenges compared to existing datasets. SParC demonstrates complex contextual dependencies, (2) has greater semantic diversity, and (3) requires generalization to unseen domains due to its cross-domain nature and the unseen databases at test time. We experiment with two state-of-the-art text-to-SQL models adapted to the context-dependent, cross-domain setup. The best model obtains an exact match accuracy of 20.2% over all questions and less than10% over all interaction sequences, indicating that the cross-domain setting and the con-textual phenomena of the dataset present significant challenges for future research. The dataset, baselines, and leaderboard are released at https://yale-lily.github.io/sparc.

قيم البحث

اقرأ أيضاً

Semantic parsing has long been a fundamental problem in natural language processing. Recently, cross-domain context-dependent semantic parsing has become a new focus of research. Central to the problem is the challenge of leveraging contextual inform ation of both natural language utterance and database schemas in the interaction history. In this paper, we present a dynamic graph framework that is capable of effectively modelling contextual utterances, tokens, database schemas, and their complicated interaction as the conversation proceeds. The framework employs a dynamic memory decay mechanism that incorporates inductive bias to integrate enriched contextual relation representation, which is further enhanced with a powerful reranking model. At the time of writing, we demonstrate that the proposed framework outperforms all existing models by large margins, achieving new state-of-the-art performance on two large-scale benchmarks, the SParC and CoSQL datasets. Specifically, the model attains a 55.8% question-match and 30.8% interaction-match accuracy on SParC, and a 46.8% question-match and 17.0% interaction-match accuracy on CoSQL.
Task-oriented compositional semantic parsing (TCSP) handles complex nested user queries and serves as an essential component of virtual assistants. Current TCSP models rely on numerous training data to achieve decent performance but fail to generaliz e to low-resource target languages or domains. In this paper, we present X2Parser, a transferable Cross-lingual and Cross-domain Parser for TCSP. Unlike previous models that learn to generate the hierarchical representations for nested intents and slots, we propose to predict flattened intents and slots representations separately and cast both prediction tasks into sequence labeling problems. After that, we further propose a fertility-based slot predictor that first learns to dynamically detect the number of labels for each token, and then predicts the slot types. Experimental results illustrate that our model can significantly outperform existing strong baselines in cross-lingual and cross-domain settings, and our model can also achieve a good generalization ability on target languages of target domains. Furthermore, our model tackles the problem in an efficient non-autoregressive way that reduces the latency by up to 66% compared to the generative model.
We present BRIDGE, a powerful sequential architecture for modeling dependencies between natural language questions and relational databases in cross-DB semantic parsing. BRIDGE represents the question and DB schema in a tagged sequence where a subset of the fields are augmented with cell values mentioned in the question. The hybrid sequence is encoded by BERT with minimal subsequent layers and the text-DB contextualization is realized via the fine-tuned deep attention in BERT. Combined with a pointer-generator decoder with schema-consistency driven search space pruning, BRIDGE attained state-of-the-art performance on popular cross-DB text-to-SQL benchmarks, Spider (71.1% dev, 67.5% test with ensemble model) and WikiSQL (92.6% dev, 91.9% test). Our analysis shows that BRIDGE effectively captures the desired cross-modal dependencies and has the potential to generalize to more text-DB related tasks. Our implementation is available at url{https://github.com/salesforce/TabularSemanticParsing}.
Semantic parsing is the task of translating natural language utterances into machine-readable meaning representations. Currently, most semantic parsing methods are not able to utilize contextual information (e.g. dialogue and comments history), which has a great potential to boost semantic parsing performance. To address this issue, context dependent semantic parsing has recently drawn a lot of attention. In this survey, we investigate progress on the methods for the context dependent semantic parsing, together with the current datasets and tasks. We then point out open problems and challenges for future research in this area. The collected resources for this topic are available at:https://github.com/zhuang-li/Contextual-Semantic-Parsing-Paper-List.
Recently, semantic parsing has attracted much attention in the community. Although many neural modeling efforts have greatly improved the performance, it still suffers from the data scarcity issue. In this paper, we propose a novel semantic parser fo r domain adaptation, where we have much fewer annotated data in the target domain compared to the source domain. Our semantic parser benefits from a two-stage coarse-to-fine framework, thus can provide different and accurate treatments for the two stages, i.e., focusing on domain invariant and domain specific information, respectively. In the coarse stage, our novel domain discrimination component and domain relevance attention encourage the model to learn transferable domain general structures. In the fine stage, the model is guided to concentrate on domain related details. Experiments on a benchmark dataset show that our method consistently outperforms several popular domain adaptation strategies. Additionally, we show that our model can well exploit limited target data to capture the difference between the source and target domain, even when the target domain has far fewer training instances.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا