ﻻ يوجد ملخص باللغة العربية
The precise measurement of neutrino oscillation parameters is one of the highest priorities in neutrino oscillation physics. To achieve the desired precision, it is necessary to reduce the systematic uncertainties related to neutrino energy reconstruction. An error in energy reconstruction is propagated to all the oscillation parameters, hence a careful estimation of neutrino energy is required. To increase the statistics, neutrino oscillation experiments use heavy nuclear targets like Argon(Z=18). The use of these nuclear targets introduces nuclear effects that severely impact the neutrino energy reconstruction which in turn poses influence in the determination of neutrino oscillation parameters. In this work, we have tried to quantify nuclear effects on the determination of CP phase at DUNE using final state interactions.
In neutrino oscillation experiments precise measurement of neutrino oscillation parameters is of prime importance as well as a challenge. To improve the statistics, presently running and proposed experiments are using heavy nuclear targets. These tar
In this work we analyze quantum decoherence in neutrino oscillations considering the Open Quantum System framework and oscillations through matter for three neutrino families. Taking DUNE as a case study we performed sensitivity analyses for two neut
We propose to use the unique event topology and reconstruction capabilities of liquid argon time projection chambers to study sub-GeV atmospheric neutrinos. The detection of low energy recoiled protons in DUNE allows for a determination of the lepton
The simplest extension of the SM to account for the observed neutrino masses and mixings is the addition of at least two singlet fermions (or right-handed neutrinos). If their masses lie at or below the GeV scale, such new fermions would be produced
The prospects of measuring the leptonic angles and CP-odd phases at a {em neutrino factory} are discussed in the scenario of three active plus one sterile neutrino. We consider the $ u_mu raw u_e$ LSND signal. Its associated large mass difference le