ﻻ يوجد ملخص باللغة العربية
Cold debris disks (T$<$200 K) are analogues to the dust in the Solar Systems Kuiper belt--dust generated from the evaporation and collision of minor bodies perturbed by planets, our Sun, and the local interstellar medium. Scattered light from debris disks acts as both a signpost for unseen planets as well as a source of contamination for directly imaging terrestrial planets, but many details of these disks are poorly understood. We lay out a critical observational path for the study of nearby debris disks that focuses on defining an empirical relationship between scattered light and thermal emission from a disk, probing the dynamics and properties of debris disks, and directly determining the influence of planets on disks. We endorse the findings and recommendations published in the National Academy reports on Exoplanet Science Strategy and Astrobiology Strategy for the Search for Life in the Universe. This white paper extends and complements the material presented therein with a focus on debris disks around nearby stars. Separate complementary papers are being submitted regarding the inner warm regions of debris disks (Mennesson et al.), the modeling of debris disk evolution (Gaspar et al.), studies of dust properties (Chen et al.), and thermal emission from disks (Su et al.).
Context. Structures in debris disks induced by planetdisk interaction are promising to provide valuable constraints on the existence and properties of embedded planets. Aims. We investigate the observability of structures in debris disks induced by p
A significant fraction of nearby young moving group members harbor circumstellar debris dust disks. Due to their proximity and youth, these disks are attractive targets for studying the early evolution of debris dust and planetesimal belts. Here we p
Debris disks around stars are considered as components of planetary systems. Constrain the dust properties of these disks can give crucial information to formation and evolution of planetary systems. As an all-sky survey, textit{InfRared Astronomical
The Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP) is a three-layered imaging survey aimed at addressing some of the most outstanding questions in astronomy today, including the nature of dark matter and dark energy. The survey has been awarded
The detection of gas in debris disks raises the question of whether this gas is a remnant from the primordial protoplanetary phase, or released by the collision of secondary bodies. In this paper we analyze ALMA observations at 1-1.5 resolution of th