ﻻ يوجد ملخص باللغة العربية
Debris disks around stars are considered as components of planetary systems. Constrain the dust properties of these disks can give crucial information to formation and evolution of planetary systems. As an all-sky survey, textit{InfRared Astronomical Satellite} (iras) gave great contribution to the debris disk searching which discovered the first debris disk host star (Vega). The iras-detected debris disk sample published by Rhee citep{rhe07} contains 146 stars with detailed information of dust properties. While the dust properties of 45 of them still can not be determined due to the limitations with the iras database (have iras detection at 60 $mu$m only). Therefore, using more sensitivity data of textit{Wide-field Infrared Survey Explorer} (wise), we can better characterize the sample stars: For the stars with iras detection at 60 $mu$m only, we refit the excessive flux densities and obtain the dust temperatures and fractional luminosities; While for the remaining stars with multi-bands iras detections, the dust properties are revised which show that the dust temperatures were over estimated in high temperatures band before. Moreover, we identify 17 stars with excesses at the wise 22 $mu$m which have smaller distribution of distance from Earth and higher fractional luminosities than the other stars without mid-infrared excess emission. Among them, 15 stars can be found in previous works.
According to the current paradigm of circumstellar disk evolution, gas-rich primordial disks evolve into gas-poor debris disks compose of second-generation dust. To explore the transition between these phases, we searched for $^{12}$CO, $^{13}$CO, an
A significant fraction of nearby young moving group members harbor circumstellar debris dust disks. Due to their proximity and youth, these disks are attractive targets for studying the early evolution of debris dust and planetesimal belts. Here we p
The detection of gas in debris disks raises the question of whether this gas is a remnant from the primordial protoplanetary phase, or released by the collision of secondary bodies. In this paper we analyze ALMA observations at 1-1.5 resolution of th
Spatial distribution and growth of dust in a clumpy protoplanetary disk subject to vigorous gravitational instability and fragmentation is studied numerically with sub-au resolution using the FEOSAD code. Hydrodynamics equations describing the evolut
We present a high-resolution ($sim0.12$, $sim16$ au, mean sensitivity of $50~mu$Jy~beam$^{-1}$ at 225 GHz) snapshot survey of 32 protoplanetary disks around young stars with spectral type earlier than M3 in the Taurus star-forming region using Atacam