ﻻ يوجد ملخص باللغة العربية
Stellar feedback has a notable influence on the formation and evolution of galaxies. However, direct observational evidence is scarce. We have performed stellar population analysis using MUSE optical spectra of the spiral galaxy NGC 628 and find that current maximum star formation in spatially resolved regions is regulated according to the level of star formation in the recent past. We propose a model based on the self-regulator or bathtub models, but for spatially resolved regions of the galaxy. We name it the resolved self-regulator model and show that the predictions of this model are in agreement with the presented observations. We observe star formation self-regulation and estimate the mass-loading factor, $eta=2.5 pm 0.5$, consistent with values predicted by galaxy formation models. The method described here will help provide better constraints on those models.
We present the relation between the star formation rate surface density, $Sigma_{rm SFR}$, and the hydrostatic mid-plane pressure, P$_{rm h}$, for 4260 star-forming regions of kpc size located in 96 galaxies included in the EDGE-CALIFA survey coverin
Cool cores of galaxy clusters are thought to be heated by low-power active galactic nuclei (AGN), whose accretion is regulated by feedback. However, the interaction between the hot gas ejected by the AGN and the ambient intracluster medium is extreme
Regions of disc galaxies with widespread star formation tend to be both gravitationally unstable and self-shielded against ionizing radiation, whereas extended outer discs with little or no star formation tend to be stable and unshielded on average.
The formation of protoplanetary discs during the collapse of molecular dense cores is significantly influenced by angular momentum transport, notably by the magnetic torque. In turn, the evolution of the magnetic field is determined by dynamical proc
(abridged) We have analyzed the properties of the rest-frame optical emission lines of a sample of 53 intensely star forming galaxies at z=1.3 to 2.7 observed with SINFONI on the ESO-VLT. We find large velocity dispersions in the lines, sigma=30-250