ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetically self-regulated formation of early protoplanetary discs

77   0   0.0 ( 0 )
 نشر من قبل Hennebelle
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The formation of protoplanetary discs during the collapse of molecular dense cores is significantly influenced by angular momentum transport, notably by the magnetic torque. In turn, the evolution of the magnetic field is determined by dynamical processes and non-ideal MHD effects such as ambipolar diffusion. Considering simple relations between various timescales characteristic of the magnetized collapse, we derive an expression for the early disc radius, $ r simeq 18 , {rm AU} , left({eta_{rm AD} / 0.1 , {rm s}} right)^{2/9} left({B_z / 0.1, {rm G}} right) ^{-4/9} left({M / 0.1 msol} right) ^{1/3},$ where $M$ is the total disc plus protostar mass, $eta_mathrm{AD}$ is the ambipolar diffusion coefficient and $B_z$ is the magnetic field in the inner part of the core. This is about significantly smaller than the discs that would form if angular momentum was conserved. The analytical predictions are confronted against a large sample of 3D, non-ideal MHD collapse calculations covering variations of a factor 100 in core mass, a factor 10 in the level of turbulence, a factor 5 in rotation, and magnetic mass-to-flux over critical mass-to-flux ratios 2 and 5. The disc radius estimates are found to agree with the numerical simulations within less than a factor 2. A striking prediction of our analysis is the weak dependence of circumstellar disc radii upon the various relevant quantities, suggesting weak variations among class-0 disc sizes. In some cases, we note the onset of large spiral arms beyond this radius.



قيم البحث

اقرأ أيضاً

Planets form in protoplanetary discs. Their masses, distribution, and orbits sensitively depend on the structure of the protoplanetary discs. However, what sets the initial structure of the discs in terms of mass, radius and accretion rate is still u nknown. We perform non-ideal MHD numerical simulations using the adaptive mesh refinement code Ramses, of a collapsing, one solar mass, molecular core to study the disc formation and early, up to 100 kyr, evolution, paying great attention to the impact of numerical resolution and accretion scheme. We found that while the mass of the central object is almost independent of the numerical parameters such as the resolution and the accretion scheme onto the sink particle, the disc mass, and to a lower extent its size, heavily depend on the accretion scheme, which we found, is itself resolution dependent. This implies that the accretion onto the star and through the disc are largely decoupled. For a relatively large domain of initial conditions (except at low magnetisation), we found that the properties of the disc do not change too significantly. In particular both the level of initial rotation and turbulence do not influence the disc properties provide the core is sufficiently magnetized. After a short relaxation phase, the disc settles in a stationary state. It then slowly grows in size but not in mass. The disc itself is weakly magnetized but its immediate surrounding is on the contrary highly magnetized. Our results show that the disc properties directly depend on the inner boundary condition, i.e. the accretion scheme onto the central object, suggesting that the disc mass is eventually controlled by the small scale accretion process, possibly the star-disc interaction. Because of ambipolar diffusion and its significant resistivity, the disc diversity remains limited and except for low magnetisation, their properties are (abridged).
Accretion discs are ubiquitous in the universe and it is a crucial issue to understand how angular momentum and mass are being radially transported in these objects. Here, we study the role played by non-linear spiral patterns within hydrodynamical a nd non self-gravitating accretion disc assuming that external disturbances such as infall onto the disc may trigger them. To do so, we computed self-similar solutions that describe discs in which a spiral wave propagates. Such solutions present both shocks and critical sonic points that we carefully analyze. For all allowed temperatures and for several spiral shocks, we calculated the wave structure. In particular we inferred the angle of the spiral patern, the stress it exerts on the disc as well as the associated flux of mass and angular momentum as a function of temperature. We quantified the rate of angular momentum transport by means of the dimensionless $alpha$ parameter. For the thickest disc we considered (corresponding to $h/r$ values of about 1/3), we found values of $alpha$ as high as $0.1$, and scaling with the temperature $T$ such that $alpha propto T^{3/2} propto (h/r)^3$. The spiral angle scales with the temperature as $arctan(r/h)$. The existence of these solutions suggests that perturbations occurring at disc outer boundaries, such as for example perturbations due to infall motions, can propagate deep inside the disc and therefore should not be ignored, even when considering small radii.
Many stars form in regions of enhanced stellar density, wherein the influence of stellar neighbours can have a strong influence on a protoplanetary disc (PPD) population. In particular, far ultraviolet (FUV) flux from massive stars drives thermal win ds from the outer edge of PPDs, accelerating disc destruction. In this work, we present a novel technique for constraining the dynamical history of a star forming environment using PPD properties in a strongly FUV irradiated environment. Applying recent models for FUV induced mass loss rates to the PPD population of Cygnus OB2, we constrain how long ago primordial gas was expelled from the region; $ 0.5$ Myr ago if the Shakura & Sunyaev $alpha$-viscosity parameter is $alpha = 10^{-2}$ (corresponding to a viscous timescale of $tau_mathrm{visc} approx 0.5$ Myr for a disc of scale radius $40$ au around a $1, M_odot$ star). This value of $alpha$ is effectively an upper limit, since it assumes efficient extinction of FUV photons throughout the embedded phase. With this gas expulsion timescale we are able to produce a full dynamical model that fits kinematic and morphological data as well as disc fractions. We suggest Cygnus OB2 was originally composed of distinct massive clumps or filaments, each with a stellar mass $sim 10^4 , M_odot$. Finally we predict that in regions of efficient FUV induced mass loss, disc mass $M_mathrm{disc}$ as a function of stellar host mass $m_mathrm{star}$ follows a power law with $M_mathrm{disc} propto m_mathrm{star}^beta$, where $beta gtrsim 2.7$ (depending on disc initial conditions and FUV exposure). This is steeper than observed correlations in regions of moderate FUV flux ($1 < beta <1.9$), and offers a promising diagnostic to establish the influence of external photoevaporation in a given region.
218 - Zs. Regaly , E. Vorobyov 2017
Horseshoe-shaped brightness asymmetries of several transitional discs are thought to be caused by large-scale vortices. Anticyclonic vortices are efficiently collect dust particles, therefore they can play a major role in planet formation. Former stu dies suggest that the disc self-gravity weakens vortices formed at the edge of the gap opened by a massive planet in discs whose masses are in the range of 0.01<=M_disc/M_*<=0.1. Here we present an investigation on the long-term evolution of the large-scale vortices formed at the viscosity transition of the discs dead zone outer edge by means of two-dimensional hydrodynamic simulations taking disc self-gravity into account. We perform a numerical study of low mass, 0.001<=M_disc/M_*<=0.01, discs, for which cases disc self-gravity was previously neglected. The large-scale vortices are found to be stretched due to disc self-gravity even for low-mass discs with M_disc/M_*>=0.005 where initially the Toomre Q-parameter was <=50 at the vortex distance. As a result of stretching, the vortex aspect ratio increases and a weaker azimuthal density contrast develops. The strength of the vortex stretching is proportional to the disc mass. The vortex stretching can be explained by a combined action of a non-vanishing gravitational torque caused by the vortex, and the Keplerian shear of the disc. Self-gravitating vortices are subject to significantly faster decay than non-self-gravitating ones. We found that vortices developed at sharp viscosity transitions of self-gravitating discs can be described by a GNG model as long as the disc viscosity is low, i.e. alpha_dz<=10^-5.
Massive stars, multiple stellar systems and clusters are born from the gravitational collapse of massive dense gaseous clumps, and the way these systems form strongly depends on how the parent clump fragments into cores during collapse. Numerical sim ulations show that magnetic fields may be the key ingredient in regulating fragmentation. Here we present ALMA observations at ~0.25 resolution of the thermal dust continuum emission at ~278 GHz towards a turbulent, dense, and massive clump, IRAS 16061-5048c1, in a very early evolutionary stage. The ALMA image shows that the clump has fragmented into many cores along a filamentary structure. We find that the number, the total mass and the spatial distribution of the fragments are consistent with fragmentation dominated by a strong magnetic field. Our observations support the theoretical prediction that the magnetic field plays a dominant role in the fragmentation process of massive turbulent clump.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا