ﻻ يوجد ملخص باللغة العربية
We provide improved convergence rates for various emph{non-smooth} optimization problems via higher-order accelerated methods. In the case of $ell_infty$ regression, we achieves an $O(epsilon^{-4/5})$ iteration complexity, breaking the $O(epsilon^{-1})$ barrier so far present for previous methods. We arrive at a similar rate for the problem of $ell_1$-SVM, going beyond what is attainable by first-order methods with prox-oracle access for non-smooth non-strongly convex problems. We further show how to achieve even faster rates by introducing higher-order regularization. Our results rely on recent advances in near-optimal accelerated methods for higher-order smooth convex optimization. In particular, we extend Nesterovs smoothing technique to show that the standard softmax approximation is not only smooth in the usual sense, but also emph{higher-order} smooth. With this observation in hand, we provide the first example of higher-order acceleration techniques yielding faster rates for emph{non-smooth} optimization, to the best of our knowledge.
We provide improved convergence rates for constrained convex-concave min-max problems and monotone variational inequalities with higher-order smoothness. In min-max settings where the $p^{th}$-order derivatives are Lipschitz continuous, we give an al
The theory of integral quadratic constraints (IQCs) allows the certification of exponential convergence of interconnected systems containing nonlinear or uncertain elements. In this work, we adapt the IQC theory to study first-order methods for smoot
In recent years, the success of deep learning has inspired many researchers to study the optimization of general smooth non-convex functions. However, recent works have established pessimistic worst-case complexities for this class functions, which i
We propose a new majorization-minimization (MM) method for non-smooth and non-convex programs, which is general enough to include the existing MM methods. Besides the local majorization condition, we only require that the difference between the direc
The usual approach to developing and analyzing first-order methods for smooth convex optimization assumes that the gradient of the objective function is uniformly smooth with some Lipschitz constant $L$. However, in many settings the differentiable c