ترغب بنشر مسار تعليمي؟ اضغط هنا

$B_sto D_s ell u$ Form Factors for the full $q^2$ range from Lattice QCD with non-perturbatively normalized currents

74   0   0.0 ( 0 )
 نشر من قبل Euan McLean
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a lattice QCD determination of the $B_s to D_s ell u$ scalar and vector form factors over the full physical range of momentum transfer. The result is derived from correlation functions computed using the Highly Improved Staggered Quark (HISQ) formalism, on the second generation MILC gluon ensembles accounting for up, down, strange and charm contributions from the sea. We calculate correlation functions for three lattice spacing values and an array of unphysically light $b$-quark masses, and extrapolate to the physical value. Using the HISQ formalism for all quarks means that the lattice current coupling to the $W$ can be renormalized non-perturbatively, giving a result free from perturbative matching errors for the first time. Our results are in agreement with, and more accurate than, previous determinations of these form factors. From the form factors we also determine the ratio of branching fractions that is sensitive to violation of lepton universality: $R(D_s) = mathcal{B}(B_sto D_s tau u_{tau})/mathcal{B}(B_sto D_s ell u_{l})$, where $ell$ is an electron or a muon. We find $R(D_s) = 0.2987(46)$, which is also more accurate than previous lattice QCD results. Combined with a future measurement of $R(D_s)$, this could supply a new test of the Standard Model. We also compare the dependence on heavy quark mass of our form factors to expectations from Heavy Quark Effective Theory.

قيم البحث

اقرأ أيضاً

We present progress on an ongoing calculation of the $B_sto D_s^{(*)} l u$ form factors calculated on the $n_f=2+1+1$ MILC ensembles and using the Highly Improved Staggered Quark action for all valence quarks. We perform the calculation at a range o f $b$ quark masses (and lattice spacings) so that we can extrapolate to the physical $b$-quark mass.
We present details of a lattice QCD calculation of the $B_sto D_s^*$ axial form factor at zero recoil using the Highly Improved Staggered Quark (HISQ) formalism on the second generation MILC gluon ensembles that include up, down, strange and charm qu arks in the sea. Using the HISQ action for all valence quarks means that the lattice axial vector current that couples to the $W$ can be renormalized fully non-perturbatively, giving a result free of the perturbative matching errors that previous lattice QCD calculations have had. We calculate correlation functions at three values of the lattice spacing, and multiple `$b$-quark masses, for physical $c$ and $s$. The functional dependence on the $b$-quark mass can be determined and compared to Heavy Quark Effective Theory expectations, and a result for the form factor obtained at the physical value of the $b$-quark mass. We find $mathcal{F}^{B_sto D_s^*}(1) = h^s_{A_1}(1) = 0.9020(96)_{text{stat}}(90)_{text{sys}}$. This is in agreement with earlier lattice QCD results, which use NRQCD $b$ quarks, with a total uncertainty reduced by more than a factor of two. We discuss implications of this result for the $Bto D^*$ axial form factor at zero recoil and for determinations of $V_{cb}$.
We report the first lattice QCD calculation of the form factors for the standard model tree-level decay $B_sto K ell u$. In combination with future measurement, this calculation will provide an alternative exclusive semileptonic determination of $|V_ {ub}|$. We compare our results with previous model calculations, make predictions for differential decay rates and branching fractions, and predict the ratio of differential branching fractions between $B_sto Ktau u$ and $B_sto Kmu u$. We also present standard model predictions for differential decay rate forward-backward asymmetries, polarization fractions, and calculate potentially useful ratios of $B_sto K$ form factors with those of the fictitious $B_stoeta_s$ decay. Our lattice simulations utilize NRQCD $b$ and HISQ light quarks on a subset of the MILC Collaborations $2+1$ asqtad gauge configurations, including two lattice spacings and a range of light quark masses.
We update the lattice calculation of the $Btopi$ semileptonic form factors, which have important applications to the CKM matrix element $|V_{ub}|$ and the $Btopiell^+ell^-$ rare decay. We use MILC asqtad ensembles with $N_f=2+1$ sea quarks and over a range of lattice spacings $a approx 0.045$--$0.12$ fm. We perform a combined chiral and continuum extrapolation of our lattice data using SU(2) staggered chiral perturbation theory in the hard pion limit. To extend the results for the form factors to the full kinematic range, we take a functional approach to parameterize the form factors using the Bourrely-Caprini-Lellouch formalism in a model-independent way. Our analysis is still blinded with an unknown off-set factor which will be disclosed when we present the final results.
115 - T. Kaneko , Y. Aoki , G. Bailas 2019
We report on our calculation of the B to D^(*) ell u form factors in 2+1 flavor lattice QCD. The Mobius domain-wall action is employed for light, strange, charm and bottom quarks. At lattice cutoffs 1/a sim 2.4, 3.6 and 4.5 GeV, we simulate bottom q uark masses up to 0.7/a to control discretization errors. The pion mass is as low as 230 MeV. We extrapolate the form factors to the continuum limit and physical quark masses, and make a comparison with recent phenomenological analyses.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا