ترغب بنشر مسار تعليمي؟ اضغط هنا

Production and optical properties of liquid scintillator for the JSNS$^{2}$ experiment

69   0   0.0 ( 0 )
 نشر من قبل Jungsic Park
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The JSNS$^{2}$ (J-PARC Sterile Neutrino Search at J-PARC Spallation Neutron Source) experiment will search for neutrino oscillations over a 24 m short baseline at J-PARC. The JSNS$^{2}$ inner detector will be filled with 17 tons of gadolinium-loaded liquid scintillator (LS) with an additional 31 tons of unloaded LS in the intermediate $gamma$-catcher and outer veto volumes. JSNS$^{2}$ has chosen Linear Alkyl Benzene (LAB) as an organic solvent because of its chemical properties. The unloaded LS was produced at a refurbished facility, originally used for scintillator production by the RENO experiment. JSNS$^{2}$ plans to use ISO tanks for the storage and transportation of the LS. In this paper, we describe the LS production, and present measurements of its optical properties and long term stability. Our measurements show that storing the LS in ISO tanks does not result in degradation of its optical properties.

قيم البحث

اقرأ أيضاً

105 - S. Mufson , B. Baugh , C. Bower 2015
The NOvA collaboration blended and delivered 8.8 kt (2.72M gal) of liquid scintillator as the active detector medium to its near and far detectors. The composition of this scintillator was specifically developed to satisfy NOvAs performance requireme nts. A rigorous set of quality control procedures was put in place to verify that the incoming components and the blended scintillator met these requirements. The scintillator was blended commercially in Hammond, IN. The scintillator was shipped to the NOvA detectors using dedicated stainless steel tanker trailers cleaned to food grade.
This work reports the production and characterization of lithium-loaded liquid scintillator (LiLS) for the Precision Reactor Oscillation and Spectrum Experiment (PROSPECT). Fifty-nine 90 liter batches of LiLS (${}^6{rm Li}$ mass fraction 0.082%$pm$0. 001%) were produced and samples from all batches were characterized by measuring their optical absorbance relative to air, light yield relative to a pure liquid scintillator reference, and pulse shape discrimination capability. Fifty-seven batches passed the quality assurance criteria and were used for the PROSPECT experiment.
The JSNS^2 (J-PARC Sterile Neutrino Search at J-PARC Spallation Neutron Source) experiment aims to search for oscillations involving a sterile neutrino in the eV^2 mass-splitting range. The experiment will search for the appearance of electron antine utrinos oscillated from muon antineutrinos. The electron antineutrinos are detected via the inverse beta decay process using a liquid scintillator detector. A 1MW beam of 3 GeV protons incident on a spallation neutron target produces an intense and pulsed neutrino source from pion, muon, and kaon decay at rest. The JSNS^2 detector is located 24 m away from the neutrino source and began operation from June 2020. The detector contains 17 tonnes of gadolinium (Gd) loaded liquid scintillator (LS) in an acrylic vessel, as a neutrino target. It is surrounded by 31 tonnes of unloaded LS in a stainless steel tank. Optical photons produced in LS are viewed by 120 R7081 Hamamatsu 10-inch Photomultiplier Tubes (PMTs). In this paper, we describe the JSNS^2 detector design, construction, and operation.
A new experiment, which is called as NEOS (NEutrino Oscillation at Short baseline), is proposed on the site of Hanbit reactors at Yonggwang, South Korea, to investigate a reactor antineutrino anomaly. A homogeneous NEOS detector having a 1000-L targe t volume has been constructed and deployed at the tendon gallery ~25 m away from the reactor core. A linear alkylbenzene (LAB) is used as a main base solvent of the NEOS detector. Furthermore, a di-isopropylnaphthalene (DIN) is added to improve the light output and pulse shape discrimination (PSD) ability. The ratio of LAB to DIN is 90:10. PPO (3 g/L) and bis-MSB (30 mg/L) are dissolved to formulate the mixture of LAB- and DIN-based liquid scintillator (LS). Then, ~0.5% gadolinium (Gd) is loaded into the LS by using the solvent-solvent extraction technique. In this paper, we report the characteristics of Gd-loaded LS (GdLS) for the NEOS detector and the handling during mass production.
The JSNS$^{2}$ (J-PARC Sterile Neutrino Search at J-PARC Spallation Neutron Source) experiment aims to search for neutrino oscillations over a 24 m short baseline at J-PARC. The JSNS$^{2}$ inner detector is filled with 17 tons of gadolinium(Gd)-loade d liquid scintillator (LS) with an additional 31 tons of unloaded LS in the intermediate $gamma$-catcher and an optically separated outer veto volumes. A total of 120 10-inch photomultiplier tubes observe the scintillating optical photons and each analog waveform is stored with the flash analog-to-digital converters. We present details of the data acquisition, processing, and data quality monitoring system. We also present two different trigger logics which are developed for the beam and self-trigger.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا