ﻻ يوجد ملخص باللغة العربية
Image-to-image translation models have shown remarkable ability on transferring images among different domains. Most of existing work follows the setting that the source domain and target domain keep the same at training and inference phases, which cannot be generalized to the scenarios for translating an image from an unseen domain to another unseen domain. In this work, we propose the Unsupervised Zero-Shot Image-to-image Translation (UZSIT) problem, which aims to learn a model that can translate samples from image domains that are not observed during training. Accordingly, we propose a framework called ZstGAN: By introducing an adversarial training scheme, ZstGAN learns to model each domain with domain-specific feature distribution that is semantically consistent on vision and attribute modalities. Then the domain-invariant features are disentangled with an shared encoder for image generation. We carry out extensive experiments on CUB and FLO datasets, and the results demonstrate the effectiveness of proposed method on UZSIT task. Moreover, ZstGAN shows significant accuracy improvements over state-of-the-art zero-shot learning methods on CUB and FLO.
Recent studies have shown remarkable success in unsupervised image-to-image translation. However, if there has no access to enough images in target classes, learning a mapping from source classes to the target classes always suffers from mode collaps
Unsupervised image-to-image translation methods learn to map images in a given class to an analogous image in a different class, drawing on unstructured (non-registered) datasets of images. While remarkably successful, current methods require access
State-of-the-art techniques in Generative Adversarial Networks (GANs) have shown remarkable success in image-to-image translation from peer domain X to domain Y using paired image data. However, obtaining abundant paired data is a non-trivial and exp
Current unsupervised image-to-image translation techniques struggle to focus their attention on individual objects without altering the background or the way multiple objects interact within a scene. Motivated by the important role of attention in hu
Manipulating visual attributes of images through human-written text is a very challenging task. On the one hand, models have to learn the manipulation without the ground truth of the desired output. On the other hand, models have to deal with the inh