ترغب بنشر مسار تعليمي؟ اضغط هنا

Realization of phase locking in good-bad-cavity active optical clock

140   0   0.0 ( 0 )
 نشر من قبل Ziyang Chen
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The residual cavity-pulling effect limits further narrowing of linewidth in dual-wavelength (DW) good-bad-cavity active optical clocks (AOCs). In this paper, we for the first time experimentally realize the cavity-length stabilization of the 1064/1470 nm DW-AOCs by utilizing the phase locking technique of two independent 1064 nm good-cavity lasers. The frequency tracking accuracy between the two main-cavities of DW-AOCs is better than $3 times {10^{ - 16}}$ at 1 s, and can reach $1 times {10^{ - 17}}$ at 1000 s. Each 1470 nm bad-cavity laser achieves a most probable linewidth of 53 Hz, which is about a quarter of that without phase locking. The influence of the asynchronous cavity-lengths variation between two DW laser systems is suppressed.



قيم البحث

اقرأ أيضاً

We present a novel method for engineering an optical clock transition that is robust against external field fluctuations and is able to overcome limits resulting from field inhomogeneities. The technique is based on the application of continuous driv ing fields to form a pair of dressed states essentially free of all relevant shifts. Specifically, the clock transition is robust to magnetic shifts, quadrupole and other tensor shifts, and amplitude fluctuations of the driving fields. The scheme is applicable to either a single ion or an ensemble of ions, and is relevant for several types of ions, such as $^{40}mathrm{Ca}^{+}$, $^{88}mathrm{Sr}^{+}$, $^{138}mathrm{Ba}^{+}$ and $^{176}mathrm{Lu}^{+}$. Taking a spherically symmetric Coulomb crystal formed by 400 $^{40}mathrm{Ca}^{+}$ ions as an example, we show through numerical simulations that the inhomogeneous linewidth of tens of Hertz in such a crystal together with linear Zeeman shifts of order 10~MHz are reduced to form a linewidth of around 1~Hz. We estimate a two-order-of-magnitude reduction in averaging time compared to state-of-the art single ion frequency references, assuming a probe laser fractional instability of $10^{-15}$. Furthermore, a statistical uncertainty reaching $2.9times 10^{-16}$ in 1~s is estimated for a cascaded clock scheme in which the dynamically decoupled Coulomb crystal clock stabilizes the interrogation laser for an $^{27}mathrm{Al}^{+}$ clock.
We consider hyperfine-mediated effects for clock transitions in $^{176}$Lu$^+$. Mixing of fine structure levels due to the hyperfine interaction bring about modifications to Lande $g$-factors and the quadrupole moment for a given state. Explicit expr essions are derived for both $g$-factor and quadrupole corrections, for which leading order terms arise from the nuclear magnetic dipole coupling. High accuracy measurements of the $g$-factors for the $^1S_0$ and $^3D_1$ hyperfine levels are carried out, which provide an experimental determination of the leading order correction terms.
The sensitivity of an atomic interferometer increases when the phase evolution of its quantum superposition state is measured over a longer interrogation interval. In practice, a limit is set by the measurement process, which returns not the phase, b ut its projection in terms of population difference on two energetic levels. The phase interval over which the relation can be inverted is thus limited to the interval $[-pi/2,pi/2]$; going beyond it introduces an ambiguity in the read out, hence a sensitivity loss. Here, we extend the unambiguous interval to probe the phase evolution of an atomic ensemble using coherence preserving measurements and phase corrections, and demonstrate the phase lock of the clock oscillator to an atomic superposition state. We propose a protocol based on the phase lock to improve atomic clocks under local oscillator noise, and foresee the application to other atomic interferometers such as inertial sensors.
We study ultracold collisions in fermionic ytterbium by precisely measuring the energy shifts they impart on the atoms internal clock states. Exploiting Fermi statistics, we uncover p-wave collisions, in both weakly and strongly interacting regimes. With the higher density afforded by two-dimensional lattice confinement, we demonstrate that strong interactions can lead to a novel suppression of this collision shift. In addition to reducing the systematic errors of lattice clocks, this work has application to quantum information and quantum simulation with alkaline-earth atoms.
We demonstrate precision measurement and control of inhomogeneous broadening in a multi-ion clock consisting of three $^{176}$Lu$^+$ ions. Microwave spectroscopy between hyperfine states in the $^3D_1$ level is used to characterise differential syste matic shifts between ions, most notably those associated with the electric quadrupole moment. By appropriate alignment of the magnetic field, we demonstrate suppression of these effects to the $sim 10^{-17}$ level relative to the $^1S_0leftrightarrow{}^3D_1$ optical transition frequency. Correlation spectroscopy on the optical transition demonstrates the feasibility of a 10s Ramsey interrogation in the three ion configuration with a corresponding projection noise limited stability of $sigma(tau)=8.2times 10^{-17}/sqrt{tau}$
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا