ترغب بنشر مسار تعليمي؟ اضغط هنا

ALMA observations require slower Core Accretion runaway growth

59   0   0.0 ( 0 )
 نشر من قبل Sergei Nayakshin
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Thanks to recent high resolution ALMA observations, there is an accumulating evidence for presence of giant planets with masses from $sim 0.01$ Jupiter mass to a few Jupiter mass with separations up to $ 100$~AU in the annular structures observed in young protoplanetary discs. We point out that these observations set unique live constraints on the process of gas accretion onto sub-Jovian planets that were not previously available. Accordingly, we use a population synthesis approach in a new way: we build time-resolved models and compare the properties of the synthetic planets with the ALMA data at the same age. Applying the widely used gas accretion formulae leads to a deficit of sub-Jovian planets and an over-abundance of a few Jupiter mass planets compared to observations. We find that gas accretion rate onto planets needs to be suppressed by about an order of magnitude to match the observed planet mass function. This slower gas giant growth predicts that the planet mass should correlate positively with the age of the protoplanetary disc, albeit with a large scatter. This effect is not clearly present in the ALMA data but may be confirmed in the near future with more observations.

قيم البحث

اقرأ أيضاً

We compare the planet-to-star mass-ratio distribution measured by gravitational microlensing to core accretion theory predictions from population synthesis models. The core accretion theorys runaway gas accretion process predicts a dearth of intermed iate-mass giant planets that is not seen in the microlensing results. In particular, the models predict $sim10,times$ fewer planets at mass ratios of $10^{-4} leq q leq 4 times 10^{-4}$ than inferred from microlensing observations. This tension implies that gas giant formation may involve processes that have hitherto been overlooked by existing core accretion models or that the planet-forming environment varies considerably as a function of host-star mass. Variation from the usual assumptions for the protoplanetary disk viscosity and thickness could reduce this discrepancy, but such changes might conflict with microlensing results at larger or smaller mass ratios, or with other observations. The resolution of this discrepancy may have important implications for planetary habitability because it has been suggested that the runaway gas accretion process may have triggered the delivery of water to our inner solar system. So, an understanding of giant planet formation may help us to determine the occurrence rate of habitable planets.
(abridged) When preplanetary bodies reach proportions of ~1 km or larger in size, their accretion rate is enhanced due to gravitational focusing (GF). We have developed a new numerical model to calculate the collisional evolution of the gravitational ly-enhanced growth stage. We validate our approach against existing N-body and statistical codes. Using the numerical model, we explore the characteristics of the runaway growth and the oligarchic growth accretion phases starting from an initial population of single planetesimal radius R_0. In models where the initial random velocity dispersion (as derived from their eccentricity) starts out below the escape speed of the planetesimal bodies, the system experiences runaway growth. We find that during the runaway growth phase the size distribution remains continuous but evolves into a power-law at the high mass end, consistent with previous studies. Furthermore, we find that the largest body accretes from all mass bins; a simple two component approximation is inapplicable during this stage. However, with growth the runaway body stirs up the random motions of the planetesimal population from which it is accreting. Ultimately, this feedback stops the fast growth and the system passes into oligarchy, where competitor bodies from neighboring zones catch up in terms of mass. Compared to previous estimates, we find that the system leaves the runaway growth phase at a somewhat larger radius. Furthermore, we assess the relevance of small, single-size fragments on the growth process. In classical models, where the initial velocity dispersion of bodies is small, these do not play a critical role during the runaway growth; however, in models that are characterized by large initial relative velocities due to external stirring of their random motions, a situation can emerge where fragments dominate the accretion.
Context: Planet formation by pebble accretion is an alternative to planetesimal-driven core accretion. In this scenario, planets grow by accreting cm-to-m-sized pebbles instead of km-sized planetesimals. One of the main differences with planetesimal- driven core accretion is the increased thermal ablation experienced by pebbles. This provides early enrichment to the planets envelope, which changes the process of core growth. Aims: We aim to predict core masses and envelope compositions of planets that form by pebble accretion and compare mass deposition of pebbles to planetesimals. Methods: We model the early growth of a proto-planet by calculating the structure of its envelope, taking into account the fate of impacting pebbles or planetesimals. The region where high-Z material can exist in vapor form is determined by the vapor pressure. We include enrichment effects by locally modifying the mean molecular weight. Results: In the pebble case, three phases of core growth can be identified. In the first phase, pebbles impact the core without significant ablation. During the second phase, ablation becomes increasingly severe. A layer of high-Z vapor starts to form around the core that absorbs a small fraction of the ablated mass. The rest either rains out to the core or mixes outwards instead, slowing core growth. In the third phase, the vapor inner region expands outwards, absorbing an increasing fraction of the ablated material as vapor. Rainout ends before the core mass reaches 0.6 M_Earth, terminating direct core growth. In the case of icy H2O pebbles, this happens before 0.1 M_Earth. Conclusions: Our results indicate that pebble accretion can directly form rocky cores up to only 0.6 M_Earth, and is unable to form similarly sized icy cores. Subsequent core growth can proceed indirectly when the planet cools, provided it is able to retain its high-Z material.
116 - Andrew F. Nelson 2012
(shortened) We perform 3D hydrodynamic simulations of gas flowing around a planetary core of mass mplan=10me embedded in a near Keplerian background flow, using a modified shearing box approximation. We employ a nested grid hydrodynamic code with as many as six nested grids, providing spatial resolution on the finest grid comparable to the present day diameters of Neptune and Uranus. We find that a strongly dynamically active flow develops such that no static envelope can form. The activity is not sensitive to plausible variations in the rotation curve of the underlying disk. It is sensitive to the thermodynamic treatment of the gas, as modeled by prescribed equations of state (either `locally isothermal or `locally isentropic) and the temperature of the background disk material. The activity is also sensitive to the shape and depth of the cores gravitational potential, through its mass and gravitational softening coefficient. The varying flow pattern gives rise to large, irregular eruptions of matter from the region around the core which return matter to the background flow: mass in the envelope at one time may not be found in the envelope at any later time. The angular momentum of material in the envelope, relative to the core, varies both in magnitude and in sign on time scales of days to months near the core and on time scales a few years at distances comparable to the Hill radius. We show that material entering the dynamically active environment may suffer intense heating and cooling events the durations of which are as short as a few hours to a few days. Peak temperatures in these events range from $T sim 1000$ K to as high as $T sim 3-4000$ K, with densities $rhosim 10^{-9}-10^{-8}$ g/cm$^3$. These time scales, densities and temperatures span a range consistent with those required for chondrule formation in the nebular shock model.
Compact substructure is expected to arise in a starless core as mass becomes concentrated in the central region likely to form a protostar. Additionally, multiple peaks may form if fragmentation occurs. We present ALMA Cycle 2 observations of 60 star less and protostellar cores in the Ophiuchus molecular cloud. We detect eight compact substructures which are >15 arcsec from the nearest Spitzer YSO. Only one of these has strong evidence for being truly starless after considering ancillary data, e.g., from Herschel and X-ray telescopes. An additional extended emission structure has tentative evidence for starlessness. The number of our detections is consistent with estimates from a combination of synthetic observations of numerical simulations and analytical arguments. This result suggests that a similar ALMA study in the Chamaeleon I cloud, which detected no compact substructure in starless cores, may be due to the peculiar evolutionary state of cores in that cloud.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا