ﻻ يوجد ملخص باللغة العربية
(shortened) We perform 3D hydrodynamic simulations of gas flowing around a planetary core of mass mplan=10me embedded in a near Keplerian background flow, using a modified shearing box approximation. We employ a nested grid hydrodynamic code with as many as six nested grids, providing spatial resolution on the finest grid comparable to the present day diameters of Neptune and Uranus. We find that a strongly dynamically active flow develops such that no static envelope can form. The activity is not sensitive to plausible variations in the rotation curve of the underlying disk. It is sensitive to the thermodynamic treatment of the gas, as modeled by prescribed equations of state (either `locally isothermal or `locally isentropic) and the temperature of the background disk material. The activity is also sensitive to the shape and depth of the cores gravitational potential, through its mass and gravitational softening coefficient. The varying flow pattern gives rise to large, irregular eruptions of matter from the region around the core which return matter to the background flow: mass in the envelope at one time may not be found in the envelope at any later time. The angular momentum of material in the envelope, relative to the core, varies both in magnitude and in sign on time scales of days to months near the core and on time scales a few years at distances comparable to the Hill radius. We show that material entering the dynamically active environment may suffer intense heating and cooling events the durations of which are as short as a few hours to a few days. Peak temperatures in these events range from $T sim 1000$ K to as high as $T sim 3-4000$ K, with densities $rhosim 10^{-9}-10^{-8}$ g/cm$^3$. These time scales, densities and temperatures span a range consistent with those required for chondrule formation in the nebular shock model.
Atmospheric heavy elements have been observed in more than a quarter of white dwarfs (WDs) at different cooling ages, indicating ongoing accretion of asteroidal material, whilst only a few per cent of the WDs possess a dust disk, and all these WDs ar
We report a new evaluation of the accretion properties of PDS~70b obtained with VLT/MUSE. The main difference from previous studies in Haffert et al. (2019) and Aoyama & Ikoma (2019) is in the mass accretion rate. Simultaneous multiple line observati
We present Direct Numerical Simulations of the transport of heat and heavy elements across a double-diffusive interface or a double-diffusive staircase, in conditions that are close to those one may expect to find near the boundary between the heavy-
Thanks to recent high resolution ALMA observations, there is an accumulating evidence for presence of giant planets with masses from $sim 0.01$ Jupiter mass to a few Jupiter mass with separations up to $ 100$~AU in the annular structures observed in
The detection of a dust disc around G29-38 and transits from debris orbiting WD1145+017 confirmed that the photospheric trace metals found in many white dwarfs arise from the accretion of tidally disrupted planetesimals. The composition of these plan