ﻻ يوجد ملخص باللغة العربية
COSINE-100 is a direct detection dark matter search experiment that uses a 106 kg array of eight NaI(Tl) crystals that are kept underground at the Yangyang Underground Laboratory to avoid cosmogenic activation of radioisotopes by cosmic rays. Even though the cosmogenic activity is declining with time, there are still significant background rates from the remnant nuclides. In this paper, we report measurements of cosmogenic isotope contaminations with less than one year half-lives that are based on extrapolations of the time dependent activities of their characteristic energy peaks to activity rates at the time the crystals were deployed underground. For longer-lived $^{109}$Cd ($T_{1/2}=1.6$ y) and $^{22}$Na ($T_{1/2}=2.6$ y), we investigate time correlations of characteristic $gamma$/X-ray peaks. The inferred sea-level production rates are compared with caluclations based on the ACTIVIA and MENDL-2 model calculations and experimental data. For $^{3}$H, which has a long, 12.3 year half-life, we evaluated the activity levels from the exposure times and determined a cosmogenic activation rate that is consistent with other measurements.
The COSINE-100 dark matter search experiment is an array of NaI(Tl) crystal detectors located in the Yangyang Underground Laboratory (Y2L). To understand measured backgrounds in the NaI(Tl) crystals we have performed Monte Carlo simulations using the
We present new constraints on the dark matter-induced annual modulation signal using 1.7 years, of COSINE-100 data with a total exposure of 97.7 kg$cdot$years. The COSINE-100 experiment, consisting of 106 kg of NaI(Tl) target material, is designed to
The annual modulation signal observed by the DAMA experiment is a long-standing question in the community of dark matter direct detection. This necessitates an independent verification of its existence using the same detection technique. The COSINE-1
Using a narrow band positron beam, the response of a large high-resolution NaI(Tl) crystal to an incident positron beam was measured. It was found that nuclear interactions cause the appearance of additional peaks in the low energy tail of the deposited energy spectrum.
A high purity and large volume NaI(Tl) scintillator was developed to search for cosmic dark matter. The required densities of radioactive impurities (RIs) such as U-chain, Th-chain are less than a few ppt to establish high sensitivity to dark matter.