ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum Communication using Code Division Multiple Access Network

83   0   0.0 ( 0 )
 نشر من قبل Vishal Sharma
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

For combining different single photon channels into single path, we use an effective and reliable technique which is known as quantum multiple access. We take advantage of an add-drop multiplexer capable of pushing and withdrawing a single photon into an optical fiber cable which carries quantum bits from multiusers. In addition to this, spreading spreads the channel noise at receiver side and use of filters stop the overlapping of adjacent channels, which helps in reducing the noise level and improved signal-to-noise ratio. In this way, we obtain enhanced performance of code division multiple access-based QKD links with a single photon without necessity of amplifiers and modulators.

قيم البحث

اقرأ أيضاً

Quantum communication typically involves a linear chain of repeater stations, each capable of reliable local quantum computation and connected to their nearest neighbors by unreliable communication links. The communication rate in existing protocols is low as two-way classical communication is used. We show that, if Bell pairs are generated between neighboring stations with a probability of heralded success greater than 0.65 and fidelity greater than 0.96, two-way classical communication can be entirely avoided and quantum information can be sent over arbitrary distances with arbitrarily low error at a rate limited only by the local gate speed. The number of qubits per repeater scales logarithmically with the communication distance. If the probability of heralded success is less than 0.65 and Bell pairs between neighboring stations with fidelity no less than 0.92 are generated only every T_B seconds, the logarithmic resource scaling remains and the communication rate through N links is proportional to 1/(T_B log^2 N).
68 - Mohsen Razavi 2011
This paper addresses multi-user quantum key distribution networks, in which any two users can mutually exchange a secret key without trusting any other nodes. The same network also supports conventional classical communications by assigning two diffe rent wavelength bands to quantum and classical signals. Time and code division multiple access (CDMA) techniques, within a passive star network, are considered. In the case of CDMA, it turns out that the optimal performance is achieved at a unity code weight. A listen-before-send protocol is then proposed to improve secret key generation rates in this case. Finally, a hybrid setup with wavelength routers and passive optical networks, which can support a large number of users, is considered and analyzed.
Quantum key distribution (QKD) which enables the secure distribution of symmetric keys between two legitimate parties is of great importance in future network security. Access network that connects multiple end-users with one network backbone can be combined with QKD to build security for end-users in a scalable and cost-effective way. Though previous QKD access networks are all implemented in the upstream direction, in this paper, we prove that downstream access network can also be constructed by using continuous-variable (CV) QKD. The security of the CV-QKD downstream access network is analyzed in detail, where we show the security analysis is secure against other parties in the network. The security analysis we proved corresponds to the downstream access network where only passive beamsplitter is sufficient to distribute the quantum signals and no other active controls are demanded. Moreover, standard CV-QKD systems can be directly fitted in the downstream access network, which makes it more applicable for practical implementations. Numerous simulation results are provided to demonstrate the performance of the CV-QKD downstream access network, where up to 64 end-users are shown to be feasible to access the network. Our work provides the security analysis framework for realizing QKD in the downstream access network which will boost the diversity for constructing practical QKD networks.
108 - Xiaozhen Liu 2018
Massive multiple-input multiple-output (M-MIMO) is an enabling technology of 5G wireless communication. The performance of an M-MIMO system is highly dependent on the speed and accuracy of obtaining the channel state information (CSI). The computatio nal complexity of channel estimation for an M-MIMO system can be reduced by making use of the sparsity of the M-MIMO channel. In this paper, we propose the hardware-efficient channel estimator based on angle-division multiple access (ADMA) for the first time. Preamble, uplink (UL) and downlink (DL) training are also implemented. For further hardware-efficiency consideration, optimization regarding quantization and approximation strategies have been discussed. Implementation techniques such as pipelining and systolic processing are also employed for hardware regularity. Numerical results and FPGA implementation have demonstrated the advantages of the proposed channel estimator.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا