ترغب بنشر مسار تعليمي؟ اضغط هنا

Slow light-enhanced optical imaging of microfiber radius variations with sub-Angstrom precision

53   0   0.0 ( 0 )
 نشر من قبل Michael Scheucher
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Optical fibers play a key role in many different fields of science and technology. In particular, fibers with a diameter of several micrometers are intensively used in photonics. For these applications, it is often important to precisely know and control the fiber radius. Here, we demonstrate a novel technique to determine the local radius variation of a 30-micrometer diameter silica fiber with sub-AA ngstrom precision with axial resolution of several tens of micrometers over a fiber length of more than half a millimeter. Our method relies on taking an image of the fibers whispering-gallery modes (WGMs). In these WGMs, the speed of light propagating along the fiber axis is strongly reduced. This enables us to determine the fiber radius with a significantly enhanced precision, far beyond the diffraction limit. By exciting different axial modes, we verify the precision and reproducibility of our method and demonstrate that we can achieve a precision better than 0.3 AA. The method can be generalized to other experimental situations where slow light occurs and, thus, has a large range of potential applications in the realm of precision metrology and optical sensing.

قيم البحث

اقرأ أيضاً

A nanoparticle detection scheme with single particle resolution is presented. The sensor contains only a taper fiber thus offering the advantages of compactness and installation flexibility. Sensing method is based on monitoring the transmitted light power which shows abrupt jumps with each particle binding to the taper surface. The experimental validation of the sensor is demonstrated with polystyrene nanoparticles of radii 120 nm and 175 nm in the 1550 nm wavelength band.
Slow-light enhanced optical detection in liquid-infiltrated photonic crystals is theoretically studied. Using a scattering-matrix approach and the Wigner-Smith delay time concept, we show that optical absorbance benefits both from slow-light phenomen a as well as a high filling factor of the energy residing in the liquid. Utilizing strongly dispersive photonic crystal structures, we numerically demonstrate how liquid-infiltrated photonic crystals facilitate enhanced light-matter interactions, by potentially up to an order of magnitude. The proposed concept provides strong opportunities for improving existing miniaturized absorbance cells for optical detection in lab-on-a-chip systems.
Slow-light media are of interest in the context of quantum computing and enhanced measurement of quantum effects, with particular emphasis on using slow-light with single photons. We use light-in-flight imaging with a single photon avalanche diode ca mera-array to image in situ pulse propagation through a slow light medium consisting of heated rubidium vapour. Light-in-flight imaging of slow light propagation enables direct visualisation of a series of physical effects including simultaneous observation of spatial pulse compression and temporal pulse dispersion. Additionally, the single-photon nature of the camera allows for observation of the group velocity of single photons with measured single-photon fractional delays greater than 1 over 1 cm of propagation.
We demonstrate a thermal infrared (IR) detector based on an ultra-high-quality-factor (Q) whispering-gallery-mode (WGM) microtoroidal silica resonator, and investigate its performance to detect IR radiation at 10 micron wavelength. The bandwidth and the sensitivity of the detector are dependent on the power of a probe laser and the detuning between the probe laser and the resonance frequency of the resonator. The microtoroid IR sensor achieved a noise-equivalent-power (NEP) of 7.46 nW, corresponding to IR intensity of 0.095 mW/cm^2
Intense terahertz (THz) electromagnetic fields have been utilized to reveal a variety of extremely nonlinear optical effects in many materials through nonperturbative driving of elementary and collective excitations. However, such nonlinear photoresp onses have not yet been discovered in light-emitting diodes (LEDs), letting alone employing them as fast, cost effective,compact, and room-temperature-operating THz detectors and cameras. Here we report ubiquitously available LEDs exhibited gigantic and fast photovoltaic signals with excellent signal-to-noise ratios when being illuminated by THz field strengths >50 kV/cm. We also successfully demonstrated THz-LED detectors and camera prototypes. These unorthodox THz detectors exhibited high responsivities (>1 kV/W) with response time shorter than those of pyroelectric detectors by four orders of magnitude. The detection mechanism was attributed to THz-field-induced nonlinear impact ionization and Schottky contact. These findings not only help deepen our understanding of strong THz field-matter interactions but also greatly contribute to the applications of strong-field THz diagnosis.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا