ترغب بنشر مسار تعليمي؟ اضغط هنا

Why gradient clipping accelerates training: A theoretical justification for adaptivity

273   0   0.0 ( 0 )
 نشر من قبل Jingzhao Zhang
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We provide a theoretical explanation for the effectiveness of gradient clipping in training deep neural networks. The key ingredient is a new smoothness condition derived from practical neural network training examples. We observe that gradient smoothness, a concept central to the analysis of first-order optimization algorithms that is often assumed to be a constant, demonstrates significant variability along the training trajectory of deep neural networks. Further, this smoothness positively correlates with the gradient norm, and contrary to standard assumptions in the literature, it can grow with the norm of the gradient. These empirical observations limit the applicability of existing theoretical analyses of algorithms that rely on a fixed bound on smoothness. These observations motivate us to introduce a novel relaxation of gradient smoothness that is weaker than the commonly used Lipschitz smoothness assumption. Under the new condition, we prove that two popular methods, namely, emph{gradient clipping} and emph{normalized gradient}, converge arbitrarily faster than gradient descent with fixed stepsize. We further explain why such adaptively scaled gradient methods can accelerate empirical convergence and verify our results empirically in popular neural network training settings.



قيم البحث

اقرأ أيضاً

We propose a new stochastic gradient method for optimizing the sum of a finite set of smooth functions, where the sum is strongly convex. While standard stochastic gradient methods converge at sublinear rates for this problem, the proposed method inc orporates a memory of previous gradient values in order to achieve a linear convergence rate. In a machine learning context, numerical experiments indicate that the new algorithm can dramatically outperform standard algorithms, both in terms of optimizing the training error and reducing the test error quickly.
Langevin dynamics (LD) has been proven to be a powerful technique for optimizing a non-convex objective as an efficient algorithm to find local minima while eventually visiting a global minimum on longer time-scales. LD is based on the first-order La ngevin diffusion which is reversible in time. We study two variants that are based on non-reversible Langevin diffusions: the underdamped Langevin dynamics (ULD) and the Langevin dynamics with a non-symmetric drift (NLD). Adopting the techniques of Tzen, Liang and Raginsky (2018) for LD to non-reversible diffusions, we show that for a given local minimum that is within an arbitrary distance from the initialization, with high probability, either the ULD trajectory ends up somewhere outside a small neighborhood of this local minimum within a recurrence time which depends on the smallest eigenvalue of the Hessian at the local minimum or they enter this neighborhood by the recurrence time and stay there for a potentially exponentially long escape time. The ULD algorithms improve upon the recurrence time obtained for LD in Tzen, Liang and Raginsky (2018) with respect to the dependency on the smallest eigenvalue of the Hessian at the local minimum. Similar result and improvement are obtained for the NLD algorithm. We also show that non-reversible variants can exit the basin of attraction of a local minimum faster in discrete time when the objective has two local minima separated by a saddle point and quantify the amount of improvement. Our analysis suggests that non-reversible Langevin algorithms are more efficient to locate a local minimum as well as exploring the state space. Our analysis is based on the quadratic approximation of the objective around a local minimum. As a by-product of our analysis, we obtain optimal mixing rates for quadratic objectives in the 2-Wasserstein distance for two non-reversible Langevin algorithms we consider.
Although application examples of multilevel optimization have already been discussed since the 90s, the development of solution methods was almost limited to bilevel cases due to the difficulty of the problem. In recent years, in machine learning, Fr anceschi et al. have proposed a method for solving bilevel optimization problems by replacing their lower-level problems with the $T$ steepest descent update equations with some prechosen iteration number $T$. In this paper, we have developed a gradient-based algorithm for multilevel optimization with $n$ levels based on their idea and proved that our reformulation with $n T$ variables asymptotically converges to the original multilevel problem. As far as we know, this is one of the first algorithms with some theoretical guarantee for multilevel optimization. Numerical experiments show that a trilevel hyperparameter learning model considering data poisoning produces more stable prediction results than an existing bilevel hyperparameter learning model in noisy data settings.
In this paper we consider a measure-theoretical formulation of the training of NeurODEs in the form of a mean-field optimal control with $L^2$-regularization of the control. We derive first order optimality conditions for the NeurODE training problem in the form of a mean-field maximum principle, and show that it admits a unique control solution, which is Lipschitz continuous in time. As a consequence of this uniqueness property, the mean-field maximum principle also provides a strong quantitative generalization error for finite sample approximations. Our derivation of the mean-field maximum principle is much simpler than the ones currently available in the literature for mean-field optimal control problems, and is based on a generalized Lagrange multiplier theorem on convex sets of spaces of measures. The latter is also new, and can be considered as a result of independent interest.
225 - Yifan Sun , Francis Bach 2021
The conditional gradient method (CGM) is widely used in large-scale sparse convex optimization, having a low per iteration computational cost for structured sparse regularizers and a greedy approach to collecting nonzeros. We explore the sparsity acq uiring properties of a general penalized CGM (P-CGM) for convex regularizers and a reweighted penalized CGM (RP-CGM) for nonconvex regularizers, replacing the usual convex constraints with gauge-inspired penalties. This generalization does not increase the per-iteration complexity noticeably. Without assuming bounded iterates or using line search, we show $O(1/t)$ convergence of the gap of each subproblem, which measures distance to a stationary point. We couple this with a screening rule which is safe in the convex case, converging to the true support at a rate $O(1/(delta^2))$ where $delta geq 0$ measures how close the problem is to degeneracy. In the nonconvex case the screening rule converges to the true support in a finite number of iterations, but is not necessarily safe in the intermediate iterates. In our experiments, we verify the consistency of the method and adjust the aggressiveness of the screening rule by tuning the concavity of the regularizer.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا