ﻻ يوجد ملخص باللغة العربية
The memory consumption of most Convolutional Neural Network (CNN) architectures grows rapidly with increasing depth of the network, which is a major constraint for efficient network training on modern GPUs with limited memory, embedded systems, and mobile devices. Several studies show that the feature maps (as generated after the convolutional layers) are the main bottleneck in this memory problem. Often, these feature maps mimic natural photographs in the sense that their energy is concentrated in the spectral domain. Although embedding CNN architectures in the spectral domain is widely exploited to accelerate the training process, we demonstrate that it is also possible to use the spectral domain to reduce the memory footprint, a method we call Spectral Domain Convolutional Neural Network (SpecNet) that performs both the convolution and the activation operations in the spectral domain. The performance of SpecNet is evaluated on three competitive object recognition benchmark tasks (CIFAR-10, SVHN, and ImageNet), and compared with several state-of-the-art implementations. Overall, SpecNet is able to reduce memory consumption by about 60% without significant loss of performance for all tested networks.
Most existing deep learning-based pan-sharpening methods have several widely recognized issues, such as spectral distortion and insufficient spatial texture enhancement, we propose a novel pan-sharpening convolutional neural network based on a high-p
Crack is one of the most common road distresses which may pose road safety hazards. Generally, crack detection is performed by either certified inspectors or structural engineers. This task is, however, time-consuming, subjective and labor-intensive.
Computerized detection of colonic polyps remains an unsolved issue because of the wide variation in the appearance, texture, color, size, and presence of the multiple polyp-like imitators during colonoscopy. In this paper, we propose a deep convoluti
Domain shift is a major problem for deploying deep networks in clinical practice. Network performance drops significantly with (target) images obtained differently than its (source) training data. Due to a lack of target label data, most work has foc
The conventional spatial convolution layers in the Convolutional Neural Networks (CNNs) are computationally expensive at the point where the training time could take days unless the number of layers, the number of training images or the size of the t