ترغب بنشر مسار تعليمي؟ اضغط هنا

The complex case of MACSJ0717.5+3745 and its extended filament: intra-cluster light, galaxy luminosity function, and galaxy orientations

67   0   0.0 ( 0 )
 نشر من قبل Ama\\\"el Ellien
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The properties of galaxies are known to be affected by their environment, but although galaxies in clusters and groups have been quite thoroughly investigated, little is known presently on galaxies belonging to filaments of the cosmic web, and on the properties of the filaments themselves. We investigate here the properties of the rich cluster MACSJ0717.5+3745 and its extended filament, by analyzing the distribution and fractions of intra-cluster light (ICL) in the core of this cluster and by trying to detect intra-filament light (IFL) in the filament. We analyze the galaxy luminosity function (GLF) of the cluster core and of the filament. We also study the orientations of galaxies in the filament to better constrain the filament properties. This work is based on Hubble Space Telescope archive data, both from the Hubble Frontier Fields in the F435W, F606W, F814W, and F105W bands, and from a mosaic of images in the F606W and F814W bands. The spatial distribution of the ICL is determined with our new wavelet-based software, DAWIS. The GLFs are extracted in the F606W and F814W bands, with a statistical subtraction of the background, and fit with Schechter functions. The galaxy orientations in the filaments are estimated with SExtractor after correction for the Point Spread Function. We detect a large amount of ICL in the cluster core, but no IFL in the cosmic filament. The fraction of ICL in the core peaks in the F606W filter before decreasing with wavelength. Though quite noisy, the GLFs in the filament are notably different from those of field galaxies, with a flatter faint end slope and an excess of bright galaxies. We do not detect a significant alignment of the galaxies in the filament region that was analyzed.



قيم البحث

اقرأ أيضاً

We report the first weak-lensing detection of a large-scale filament funneling matter onto the core of the massive galaxy cluster MACSJ0717.5+3745. Our analysis is based on a mosaic of 18 multi-passband images obtained with ACS aboard the HST, coveri ng an area of sim 10x20 arcmin^2. We use a weak-lensing pipeline developed for the COSMOS survey, modified for the analysis of galaxy clusters, to produce a weak-lensing catalogue. A mass map is then computed by applying a weak-gravitational-lensing multi-scale reconstruction technique designed to describe irregular mass distributions such as the one investigated here. We test the resulting mass map by comparing the mass distribution inferred for the cluster core with the one derived from strong-lensing constraints and find excellent agreement. The filament is detected within the 3 sigma detection contour of the lensing mass reconstruction, and underlines the importance of filaments for theoretical and numerical models of the mass distribution in the Cosmic Web. We measure the filaments projected length as sim 4.5 h_{74}^{-1} Mpc, and its mean density as (2.92 pm 0.66)10^8 h_{74} M_{odot} kpc^{-2}. Combined with the redshift distribution of galaxies obtained after an extensive spectroscopic follow-up in the area, we can rule out any projection effect resulting from the chance alignment on the sky of unrelated galaxy group-scale structures. Assuming plausible constraints concerning the structures geometry based on its galaxy velocity field, we construct a 3D model of the large-scale filament. Within this framework, we derive the three-dimensional length of the filament to be 18 h_{74}^{-1} Mpc, and a deprojected density in terms of the critical density of the Universe of (206 pm 46) rho_{crit}, a value that lies at the very high end of the range predicted by numerical simulations.
In this paper we present the results of our search for and study of $z gtrsim 6$ galaxy candidates behind the third Frontier Fields (FF) cluster, MACSJ0717.5+3745, and its parallel field, combining data from Hubble and Spitzer. We select 39 candidate s using the Lyman Break technique, for which the clear non-detection in optical make the extreme mid-$z$ interlopers hypothesis unlikely. We also take benefit from $z gtrsim 6$ samples selected using previous Frontier Fields datasets of Abell 2744 and MACS0416 to improve the constraints on the properties of very high-redshift objects. We compute the redshift and the physical properties, such emission lines properties, star formation rate, reddening, and stellar mass for all Frontier Fields objects from their spectral energy distribution using templates including nebular emission lines. We study the relationship between several physical properties and confirm the trend already observed in previous surveys for evolution of star formation rate with galaxy mass, and between the size and the UV luminosity of our candidates. The analysis of the evolution of the UV Luminosity Function with redshift seems more compatible with an evolution of density. Moreover, no robust $zge$8.5 object is selected behind the cluster field, and few $z$$sim$9 candidates have been selected in the two previous datasets from this legacy survey, suggesting a strong evolution in the number density of galaxies between $z$$sim$8 and 9. Thanks to the use of the lensing cluster, we study the evolution of the star formation rate density produced by galaxies with L$>$0.03L$^{star}$, and confirm the strong decrease observed between $z$$sim$8 and 9.
302 - G. Boue , F. Durret (1 2007
We investigate the LF in the very relaxed cluster Abell 496. Our analysis is based on deep images obtained at CFHT with MegaPrime/MegaCam in four bands (ugri) covering a 1x1 deg2 region, which is centered on the cluster Abell 496 and extends to near its virial radius. The LFs are estimated by statistically subtracting a reference field taken as the mean of the 4 Deep fields of the CFHTLS survey. Background contamination is minimized by cutting out galaxies redder than the observed Red Sequence in the g-i versus i colour-magnitude diagram. In Abell 496, the global LFs show a faint-end slope alpha=-1.55+/-0.06 and vary little with observing band. Without colour cuts, the LFs are much noisier but not significantly steeper. The faint-end slopes show a statistically significant steepening from alpha=-1.4+/-0.1 in the central region (extending to half a virial radius) to -1.8+/-0.1 in the Southern envelope of the cluster. Cosmic variance and uncertain star-galaxy separation are our main limiting factors in measuring the faint-end of the LFs. The large-scale environment of Abell 496, probed with the fairly complete 6dFGS catalogue, shows a statistically significant 36 Mpc long filament at PA=137 deg, but we do not find an enhanced LF along this axis. Our LFs do not display the large number of dwarf galaxies (alpha ~ -2) inferred by several authors, whose analyses may suffer from field contamination caused by inexistent or inadequate colour cuts. Alternatively, different clusters may have different faint-end slopes, but this is hard to reconcile with the wide range of slopes found for given clusters and for wide sets of clusters.
110 - P. Tzanavaris 2008
AIMS: We have compiled one of the largest normal-galaxy samples ever to probe X-ray luminosity function evolution separately for early and late-type systems. METHODS: We selected 207 normal galaxies up to redshift z~1.4, with data from four major C handra X-ray surveys, namely the Chandra deep fields (north, south and extended) and XBootes, and a combination of X-ray and optical criteria. We used template spectral energy-distribution fitting to obtain separate early- and late-type sub-samples, made up of 101 and 106 systems, respectively. For the full sample, as well as the two sub-samples, we obtained luminosity functions using both a non-parametric and a parametric, maximum-likelihood method. RESULTS: For the full sample, the non-parametric method strongly suggests luminosity evolution with redshift. The maximum-likelihood estimate shows that this evolution follows ~(1+z)^k_total, k_total=2.2+-0.3. For the late-type sub-sample, we obtained k_late=2.4^+1.0_-2.0. We detected no significant evolution in the early-type sub-sample. The distributions of early and late-type systems with redshift show that late types dominate at z>~0.5 and hence drive the observed evolution for the total sample. CONCLUSIONS: Our results support previous results in X-ray and other wavebands, which suggests luminosity evolution with k=2-3.
We present the analysis of the luminosity function of a large sample of galaxy clusters from the Northern Sky Optical Cluster Survey, using latest data from the Sloan Digital Sky Survey. Our global luminosity function (down to M_r<= -16) does not sho w the presence of an upturn at faint magnitudes, while we do observe a strong dependence of its shape on both richness and cluster-centric radius, with a brightening of M^* and an increase of the dwarf to giant ratio with richness, indicating that more massive systems are more efficient in creating/retaining a population of dwarf satellites. This is observed both within physical (0.5 R_200) and fixed (0.5 Mpc) apertures, suggesting that the trend is either due to a global effect, operating at all scales, or to a local one but operating on even smaller scales. We further observe a decrease of the relative number of dwarf galaxies towards the cluster center; this is most probably due to tidal collisions or collisional disruption of the dwarfs since merging processes are inhibited by the high velocity dispersions in cluster cores and, furthermore, we do not observe a strong dependence of the bright end on the environment. We find indication that the dwarf to giant ratio decreases with increasing redshift, within 0.07<z<0.2. We also measure a trend for stronger suppression of faint galaxies (below M^*+2) with increasing redshift in poor systems, with respect to more massive ones, indicating that the evolutionary stage of less massive galaxies depends more critically on the environment. Finally we point out that the luminosity function is far from universal; hence the uncertainties introduced by the different methods used to build a composite function may partially explain the variety of faint-end slopes reported in the literature as well as, in some cases, the presence of a faint-end upturn.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا