ترغب بنشر مسار تعليمي؟ اضغط هنا

The galaxy luminosity function and its evolution with Chandra

112   0   0.0 ( 0 )
 نشر من قبل Panayiotis Tzanavaris
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف P. Tzanavaris




اسأل ChatGPT حول البحث

AIMS: We have compiled one of the largest normal-galaxy samples ever to probe X-ray luminosity function evolution separately for early and late-type systems. METHODS: We selected 207 normal galaxies up to redshift z~1.4, with data from four major Chandra X-ray surveys, namely the Chandra deep fields (north, south and extended) and XBootes, and a combination of X-ray and optical criteria. We used template spectral energy-distribution fitting to obtain separate early- and late-type sub-samples, made up of 101 and 106 systems, respectively. For the full sample, as well as the two sub-samples, we obtained luminosity functions using both a non-parametric and a parametric, maximum-likelihood method. RESULTS: For the full sample, the non-parametric method strongly suggests luminosity evolution with redshift. The maximum-likelihood estimate shows that this evolution follows ~(1+z)^k_total, k_total=2.2+-0.3. For the late-type sub-sample, we obtained k_late=2.4^+1.0_-2.0. We detected no significant evolution in the early-type sub-sample. The distributions of early and late-type systems with redshift show that late types dominate at z>~0.5 and hence drive the observed evolution for the total sample. CONCLUSIONS: Our results support previous results in X-ray and other wavebands, which suggests luminosity evolution with k=2-3.



قيم البحث

اقرأ أيضاً

We compile one of the largest ever samples to probe the X-ray normal galaxy luminosity function and its evolution with cosmic time. In particular, we select 207 galaxies (106 late and 101 early-type systems) from the Chandra Deep Field North and Sout h surveys, the Extended Chandra Deep Field South and the XBOOTES survey. We derive the luminosity function separately for the total (early+late), the early and the late-type samples using both a parametric maximum likelihood method, and a variant of the non-parametric 1/V_m method. Although the statistics is limited, we find that the total (early+late) galaxy sample is consistent with a Pure Luminosity evolution model where the luminosity evolves according to L(z) ~ (1+z)^2.2. The late-type systems appear to drive this trend while the early-type systems show much weaker evidence for evolution. We argue that the X-ray evolution of late-type systems is consistent with that of blue galaxies in the optical. In contrast there is a mismatch between the X-ray evolution of early-type systems and that of red galaxies at optical wavelengths.
We present an analysis of star formation and nuclear activity of about 28000 galaxies in a volume-limited sample taken from SDSS DR4 low-redshift catalogue (LRC) taken from the New York University Value Added Galaxy Catalogue (NYU-VAGC) of Blanton et al. 2005, with 0.005<z<0.037, ~90% complete to M_r=-18.0. We find that in high-density regions ~70 per cent of galaxies are passively evolving independent of luminosity. In the rarefied field, however, the fraction of passively evolving galaxies is a strong function of luminosity, dropping from 50 per cent for Mr <~ -21 to zero by Mr ~ -18. Moreover the few passively evolving dwarf galaxies in field regions appear as satellites to bright (>~ L*) galaxies. Moreover the fraction of galaxies with the optical signatures of an active galactic nucleus (AGN) decreases steadily from ~50% at Mr~-21 to ~0 per cent by Mr~-18 closely mirroring the luminosity dependence of the passive galaxy fraction in low-density environments (see fig. 1 continuous lines). This result reflects the increasing importance of AGN feedback with galaxy mass for their evolution, such that the star formation histories of massive galaxies are primarily determined by their past merger history.
310 - G. Boue , F. Durret (1 2007
We investigate the LF in the very relaxed cluster Abell 496. Our analysis is based on deep images obtained at CFHT with MegaPrime/MegaCam in four bands (ugri) covering a 1x1 deg2 region, which is centered on the cluster Abell 496 and extends to near its virial radius. The LFs are estimated by statistically subtracting a reference field taken as the mean of the 4 Deep fields of the CFHTLS survey. Background contamination is minimized by cutting out galaxies redder than the observed Red Sequence in the g-i versus i colour-magnitude diagram. In Abell 496, the global LFs show a faint-end slope alpha=-1.55+/-0.06 and vary little with observing band. Without colour cuts, the LFs are much noisier but not significantly steeper. The faint-end slopes show a statistically significant steepening from alpha=-1.4+/-0.1 in the central region (extending to half a virial radius) to -1.8+/-0.1 in the Southern envelope of the cluster. Cosmic variance and uncertain star-galaxy separation are our main limiting factors in measuring the faint-end of the LFs. The large-scale environment of Abell 496, probed with the fairly complete 6dFGS catalogue, shows a statistically significant 36 Mpc long filament at PA=137 deg, but we do not find an enhanced LF along this axis. Our LFs do not display the large number of dwarf galaxies (alpha ~ -2) inferred by several authors, whose analyses may suffer from field contamination caused by inexistent or inadequate colour cuts. Alternatively, different clusters may have different faint-end slopes, but this is hard to reconcile with the wide range of slopes found for given clusters and for wide sets of clusters.
168 - Yen-Ting Lin 2006
We study the evolution of two fundamental properties of galaxy clusters: the luminosity function (LF) and the scaling relations between the total galaxy number N (or luminosity) and cluster mass M. Using a sample of 27 clusters (0<z<0.9) with new nea r-IR observations and mass estimates derived from X-ray temperatures, in conjunction with data from the literature, we construct the largest sample for such studies to date. The evolution of the characteristic luminosity of the LF can be described by a passively evolving population formed in a single burst at z=1.5-2. Under the assumption that the mass-temperature relation evolves self-similarly, and after the passive evolution is accounted for, the N-M scaling shows no signs of evolution out to z=0.9. Our data provide direct constraints on halo occupation distribution models, and suggest that the way galaxies populate cluster-scale dark matter halos has not changed in the past 7 Gyr, in line with previous investigations.
65 - J. Singal , J. George , A. Gerber 2016
We determine the 22$mu$m luminosity evolution and luminosity function for quasars from a data set of over 20,000 objects obtained by combining flux-limited Sloan Digital Sky Survey optical and Wide field Infrared Survey Explorer mid-infrared data. We apply methods developed in previous works to access the intrinsic population distributions non-parametrically, taking into account the truncations and correlations inherent in the data. We find that the population of quasars exhibits positive luminosity evolution with redshift in the mid-infrared, but with considerably less mid-infrared evolution than in the optical or radio bands. With the luminosity evolutions accounted for, we determine the density evolution and local mid-infrared luminosity function. The latter displays a sharp flattening at local luminosities below $sim 10^{31}$ erg sec$^{-1}$ Hz$^{-1}$, which has been reported previously at 15 $mu$m for AGN classified as both type-1 and type-2. We calculate the integrated total emission from quasars at 22 $mu$m and find it to be a small fraction of both the cosmic infrared background light and the integrated emission from all sources at this wavelength.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا