ترغب بنشر مسار تعليمي؟ اضغط هنا

Auditory Separation of a Conversation from Background via Attentional Gating

107   0   0.0 ( 0 )
 نشر من قبل Shariq Mobin
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a model for separating a set of voices out of a sound mixture containing an unknown number of sources. Our Attentional Gating Network (AGN) uses a variable attentional context to specify which speakers in the mixture are of interest. The attentional context is specified by an embedding vector which modifies the processing of a neural network through an additive bias. Individual speaker embeddings are learned to separate a single speaker while superpositions of the individual speaker embeddings are used to separate sets of speakers. We first evaluate AGN on a traditional single speaker separation task and show an improvement of 9% with respect to comparable models. Then, we introduce a new task to separate an arbitrary subset of voices from a mixture of an unknown-sized set of voices, inspired by the human ability to separate a conversation of interest from background chatter at a cafeteria. We show that AGN is the only model capable of solving this task, performing only 7% worse than on the single speaker separation task.



قيم البحث

اقرأ أيضاً

This paper describes a dataset and protocols for evaluating continuous speech separation algorithms. Most prior studies on speech separation use pre-segmented signals of artificially mixed speech utterances which are mostly emph{fully} overlapped, an d the algorithms are evaluated based on signal-to-distortion ratio or similar performance metrics. However, in natural conversations, a speech signal is continuous, containing both overlapped and overlap-free components. In addition, the signal-based metrics have very weak correlations with automatic speech recognition (ASR) accuracy. We think that not only does this make it hard to assess the practical relevance of the tested algorithms, it also hinders researchers from developing systems that can be readily applied to real scenarios. In this paper, we define continuous speech separation (CSS) as a task of generating a set of non-overlapped speech signals from a textit{continuous} audio stream that contains multiple utterances that are emph{partially} overlapped by a varying degree. A new real recorded dataset, called LibriCSS, is derived from LibriSpeech by concatenating the corpus utterances to simulate a conversation and capturing the audio replays with far-field microphones. A Kaldi-based ASR evaluation protocol is also established by using a well-trained multi-conditional acoustic model. By using this dataset, several aspects of a recently proposed speaker-independent CSS algorithm are investigated. The dataset and evaluation scripts are available to facilitate the research in this direction.
This paper presents an unsupervised method that trains neural source separation by using only multichannel mixture signals. Conventional neural separation methods require a lot of supervised data to achieve excellent performance. Although multichanne l methods based on spatial information can work without such training data, they are often sensitive to parameter initialization and degraded with the sources located close to each other. The proposed method uses a cost function based on a spatial model called a complex Gaussian mixture model (cGMM). This model has the time-frequency (TF) masks and direction of arrivals (DoAs) of sources as latent variables and is used for training separation and localization networks that respectively estimate these variables. This joint training solves the frequency permutation ambiguity of the spatial model in a unified deep Bayesian framework. In addition, the pre-trained network can be used not only for conducting monaural separation but also for efficiently initializing a multichannel separation algorithm. Experimental results with simulated speech mixtures showed that our method outperformed a conventional initialization method.
Source separation for music is the task of isolating contributions, or stems, from different instruments recorded individually and arranged together to form a song. Such components include voice, bass, drums and any other accompaniments.Contrarily to many audio synthesis tasks where the best performances are achieved by models that directly generate the waveform, the state-of-the-art in source separation for music is to compute masks on the magnitude spectrum. In this paper, we compare two waveform domain architectures. We first adapt Conv-Tasnet, initially developed for speech source separation,to the task of music source separation. While Conv-Tasnet beats many existing spectrogram-domain methods, it suffersfrom significant artifacts, as shown by human evaluations. We propose instead Demucs, a novel waveform-to-waveform model,with a U-Net structure and bidirectional LSTM.Experiments on the MusDB dataset show that, with proper data augmentation, Demucs beats allexisting state-of-the-art architectures, including Conv-Tasnet, with 6.3 SDR on average, (and up to 6.8 with 150 extra training songs, even surpassing the IRM oracle for the bass source).Using recent development in model quantization, Demucs can be compressed down to 120MBwithout any loss of accuracy.We also provide human evaluations, showing that Demucs benefit from a large advantagein terms of the naturalness of the audio. However, it suffers from some bleeding,especially between the vocals and other source.
We present a novel source separation model to decompose asingle-channel speech signal into two speech segments belonging to two different speakers. The proposed model is a neural network based on residual blocks, and uses learnt speaker embeddings cr eated from additional clean context recordings of the two speakers as input to assist in attributing the different time-frequency bins to the two speakers. In experiments, we show that the proposed model yields good performance in the source separation task, and outperforms the state-of-the-art baselines. Specifically, separating speech from the challenging VoxCeleb dataset, the proposed model yields 4.79dB signal-to-distortion ratio, 8.44dB signal-to-artifacts ratio and 7.11dB signal-to-interference ratio.
Music source separation with deep neural networks typically relies only on amplitude features. In this paper we show that additional phase features can improve the separation performance. Using the theoretical relationship between STFT phase and ampl itude, we conjecture that derivatives of the phase are a good feature representation opposed to the raw phase. We verify this conjecture experimentally and propose a new DNN architecture which combines amplitude and phase. This joint approach achieves a better signal-to distortion ratio on the DSD100 dataset for all instruments compared to a network that uses only amplitude features. Especially, the bass instrument benefits from the phase information.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا