ترغب بنشر مسار تعليمي؟ اضغط هنا

Rethinking Softmax Cross-Entropy Loss for Adversarial Robustness

426   0   0.0 ( 0 )
 نشر من قبل Tianyu Pang
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Previous work shows that adversarially robust generalization requires larger sample complexity, and the same dataset, e.g., CIFAR-10, which enables good standard accuracy may not suffice to train robust models. Since collecting new training data could be costly, we focus on better utilizing the given data by inducing the regions with high sample density in the feature space, which could lead to locally sufficient samples for robust learning. We first formally show that the softmax cross-entropy (SCE) loss and its variants convey inappropriate supervisory signals, which encourage the learned feature points to spread over the space sparsely in training. This inspires us to propose the Max-Mahalanobis center (MMC) loss to explicitly induce dense feature regions in order to benefit robustness. Namely, the MMC loss encourages the model to concentrate on learning ordered and compact representations, which gather around the preset optimal centers for different classes. We empirically demonstrate that applying the MMC loss can significantly improve robustness even under strong adaptive attacks, while keeping state-of-the-art accuracy on clean inputs with little extra computation compared to the SCE loss.

قيم البحث

اقرأ أيضاً

Mutual information is widely applied to learn latent representations of observations, whilst its implication in classification neural networks remain to be better explained. We show that optimising the parameters of classification neural networks wit h softmax cross-entropy is equivalent to maximising the mutual information between inputs and labels under the balanced data assumption. Through experiments on synthetic and real datasets, we show that softmax cross-entropy can estimate mutual information approximately. When applied to image classification, this relation helps approximate the point-wise mutual information between an input image and a label without modifying the network structure. To this end, we propose infoCAM, informative class activation map, which highlights regions of the input image that are the most relevant to a given label based on differences in information. The activation map helps localise the target object in an input image. Through experiments on the semi-supervised object localisation task with two real-world datasets, we evaluate the effectiveness of our information-theoretic approach.
This paper investigates the theory of robustness against adversarial attacks. It focuses on the family of randomization techniques that consist in injecting noise in the network at inference time. These techniques have proven effective in many contex ts, but lack theoretical arguments. We close this gap by presenting a theoretical analysis of these approaches, hence explaining why they perform well in practice. More precisely, we make two new contributions. The first one relates the randomization rate to robustness to adversarial attacks. This result applies for the general family of exponential distributions, and thus extends and unifies the previous approaches. The second contribution consists in devising a new upper bound on the adversarial generalization gap of randomized neural networks. We support our theoretical claims with a set of experiments.
Deep neural networks are prone to catastrophic forgetting when incrementally trained on new classes or new tasks as adaptation to the new data leads to a drastic decrease of the performance on the old classes and tasks. By using a small memory for re hearsal and knowledge distillation, recent methods have proven to be effective to mitigate catastrophic forgetting. However due to the limited size of the memory, large imbalance between the amount of data available for the old and new classes still remains which results in a deterioration of the overall accuracy of the model. To address this problem, we propose the use of the Balanced Softmax Cross-Entropy loss and show that it can be combined with exiting methods for incremental learning to improve their performances while also decreasing the computational cost of the training procedure in some cases. Complete experiments on the competitive ImageNet, subImageNet and CIFAR100 datasets show states-of-the-art results.
Recent breakthroughs in the field of deep learning have led to advancements in a broad spectrum of tasks in computer vision, audio processing, natural language processing and other areas. In most instances where these tasks are deployed in real-world scenarios, the models used in them have been shown to be susceptible to adversarial attacks, making it imperative for us to address the challenge of their adversarial robustness. Existing techniques for adversarial robustness fall into three broad categories: defensive distillation techniques, adversarial training techniques, and randomized or non-deterministic model based techniques. In this paper, we propose a novel neural network paradigm that falls under the category of randomized models for adversarial robustness, but differs from all existing techniques under this category in that it models each parameter of the network as a statistical distribution with learnable parameters. We show experimentally that this framework is highly robust to a variety of white-box and black-box adversarial attacks, while preserving the task-specific performance of the traditional neural network model.
Despite the remarkable success of deep neural networks, significant concerns have emerged about their robustness to adversarial perturbations to inputs. While most attacks aim to ensure that these are imperceptible, physical perturbation attacks typi cally aim for being unsuspicious, even if perceptible. However, there is no universal notion of what it means for adversarial examples to be unsuspicious. We propose an approach for modeling suspiciousness by leveraging cognitive salience. Specifically, we split an image into foreground (salient region) and background (the rest), and allow significantly larger adversarial perturbations in the background, while ensuring that cognitive salience of background remains low. We describe how to compute the resulting non-salience-preserving dual-perturbation attacks on classifiers. We then experimentally demonstrate that our attacks indeed do not significantly change perceptual salience of the background, but are highly effective against classifiers robust to conventional attacks. Furthermore, we show that adversarial training with dual-perturbation attacks yields classifiers that are more robust to these than state-of-the-art robust learning approaches, and comparable in terms of robustness to conventional attacks.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا