ﻻ يوجد ملخص باللغة العربية
Searches for new physics in the coherent elastic neutrino-nucleus scattering require a precise knowledge of the neutrino flux and energy spectrum. In this paper we investigate the feasibility and the performances of an experiment based on a $^{51}$Cr source, whose neutrino spectrum is known and whose activity can be heat-monitored at few permil level. With a 5 MCi source placed at ~ 25 cm from the detector, under an exposure of two $^{51}$Cr half-lives (55.4 days), we evaluate 3900 (900) counts on a 2000 cm$^3$ target of germanium (sapphire) featuring an energy threshold of 8 (20) eV. To further increase the exposure, multiple activations of the same source could be possible.
The cross section for coherent elastic neutrino-nucleus scattering (CE$ u$NS) depends on the response of the target nucleus to the external current, in the Standard Model (SM) mediated by the exchange of a $Z$ boson. This is typically subsumed into a
We propose to detect and to study neutrino neutral current coherent scattering off atomic nuclei with a two-phase emission detector using liquid xenon as a working medium. Expected signals and backgrounds are calculated for two possible experimental
The European Spallation Source (ESS), presently well on its way to completion, will soon provide the most intense neutron beams for multi-disciplinary science. Fortuitously, it will also generate the largest pulsed neutrino flux suitable for the dete
We present the potential sensitivity of a future recoil detector for a first detection of the process of coherent elastic neutrino nucleus scattering (CE$ u$NS). We use the Chooz reactor complex in France as our luminous source of reactor neutrinos.
We study the sensitivity of detectors with directional sensitivity to coherent elastic neutrino-nucleus scattering (CE$ u$NS), and how these detectors complement measurements of the nuclear recoil energy. We consider stopped pion and reactor neutrino