ﻻ يوجد ملخص باللغة العربية
The Euclidean scattering transform was introduced nearly a decade ago to improve the mathematical understanding of convolutional neural networks. Inspired by recent interest in geometric deep learning, which aims to generalize convolutional neural networks to manifold and graph-structured domains, we define a geometric scattering transform on manifolds. Similar to the Euclidean scattering transform, the geometric scattering transform is based on a cascade of wavelet filters and pointwise nonlinearities. It is invariant to local isometries and stable to certain types of diffeomorphisms. Empirical results demonstrate its utility on several geometric learning tasks. Our results generalize the deformation stability and local translation invariance of Euclidean scattering, and demonstrate the importance of linking the used filter structures to the underlying geometry of the data.
The Euclidean scattering transform was introduced nearly a decade ago to improve the mathematical understanding of the success of convolutional neural networks (ConvNets) in image data analysis and other tasks. Inspired by recent interest in geometri
We study the propagator of the wave equation on a closed Riemannian manifold $M$. We propose a geometric approach to the construction of the propagator as a single oscillatory integral global both in space and in time with a distinguished complex-val
The inductive biases of graph representation learning algorithms are often encoded in the background geometry of their embedding space. In this paper, we show that general directed graphs can be effectively represented by an embedding model that comb
In this paper we develop the theory of parametric polynomial regression in Riemannian manifolds and Lie groups. We show application of Riemannian polynomial regression to shape analysis in Kendall shape space. Results are presented, showing the power
Convolutional Neural Networks (CNNs) have been applied to data with underlying non-Euclidean structures and have achieved impressive successes. This brings the stability analysis of CNNs on non-Euclidean domains into notice because CNNs have been pro