ﻻ يوجد ملخص باللغة العربية
We show unsupervised machine learning techniques are a valuable tool for both visualizing and computationally accelerating the estimation of galaxy physical properties from photometric data. As a proof of concept, we use self organizing maps (SOMs) to visualize a spectral energy distribution (SED) model library in the observed photometry space. The resulting visual maps allow for a better understanding of how the observed data maps to physical properties and to better optimize the model libraries for a given set of observational data. Next, the SOMs are used to estimate the physical parameters of 14,000 z~1 galaxies in the COSMOS field and found to be in agreement with those measured with SED fitting. However, the SOM method is able to estimate the full probability distribution functions for each galaxy up to about a million times faster than direct model fitting. We conclude by discussing how this speed up and learning how the galaxy data manifold maps to physical parameter space and visualizing this mapping in lower dimensions helps overcome other challenges in galaxy formation and evolution.
We present a general framework of semi-supervised dimensionality reduction for manifold learning which naturally generalizes existing supervised and unsupervised learning frameworks which apply the spectral decomposition. Algorithms derived under our
Manifold learning-based encoders have been playing important roles in nonlinear dimensionality reduction (NLDR) for data exploration. However, existing methods can often fail to preserve geometric, topological and/or distributional structures of data
Large scale dynamical systems (e.g. many nonlinear coupled differential equations) can often be summarized in terms of only a few state variables (a few equations), a trait that reduces complexity and facilitates exploration of behavioral aspects of
The discovering of low-dimensional manifolds in high-dimensional data is one of the main goals in manifold learning. We propose a new approach to identify the effective dimension (intrinsic dimension) of low-dimensional manifolds. The scale space vie
Dimension reduction (DR) aims to learn low-dimensional representations of high-dimensional data with the preservation of essential information. In the context of manifold learning, we define that the representation after information-lossless DR prese