ﻻ يوجد ملخص باللغة العربية
We present a general framework of semi-supervised dimensionality reduction for manifold learning which naturally generalizes existing supervised and unsupervised learning frameworks which apply the spectral decomposition. Algorithms derived under our framework are able to employ both labeled and unlabeled examples and are able to handle complex problems where data form separate clusters of manifolds. Our framework offers simple views, explains relationships among existing frameworks and provides further extensions which can improve existing algorithms. Furthermore, a new semi-supervised kernelization framework called ``KPCA trick is proposed to handle non-linear problems.
In this paper, we proposed a general framework for data poisoning attacks to graph-based semi-supervised learning (G-SSL). In this framework, we first unify different tasks, goals, and constraints into a single formula for data poisoning attack in G-
We extend semi-supervised learning to the problem of domain adaptation to learn significantly higher-accuracy models that train on one data distribution and test on a different one. With the goal of generality, we introduce AdaMatch, a method that un
Manifold learning-based encoders have been playing important roles in nonlinear dimensionality reduction (NLDR) for data exploration. However, existing methods can often fail to preserve geometric, topological and/or distributional structures of data
Dimension reduction (DR) aims to learn low-dimensional representations of high-dimensional data with the preservation of essential information. In the context of manifold learning, we define that the representation after information-lossless DR prese
Federated Semi-Supervised Learning (FedSSL) has gained rising attention from both academic and industrial researchers, due to its unique characteristics of co-training machine learning models with isolated yet unlabeled data. Most existing FedSSL met