ﻻ يوجد ملخص باللغة العربية
This paper studies lower bounds for fundamental optimization problems in the CONGEST model. We show that solving problems exactly in this model can be a hard task, by providing $tilde{Omega}(n^2)$ lower bounds for cornerstone problems, such as minimum dominating set (MDS), Hamiltonian path, Steiner tree and max-cut. These are almost tight, since all of these problems can be solved optimally in $O(n^2)$ rounds. Moreover, we show that even in bounded-degree graphs and even in simple graphs with maximum degree 5 and logarithmic diameter, it holds that various tasks, such as finding a maximum independent set (MaxIS) or a minimum vertex cover, are still difficult, requiring a near-tight number of $tilde{Omega}(n)$ rounds. Furthermore, we show that in some cases even approximations are difficult, by providing an $tilde{Omega}(n^2)$ lower bound for a $(7/8+epsilon)$-approximation for MaxIS, and a nearly-linear lower bound for an $O(log{n})$-approximation for the $k$-MDS problem for any constant $k geq 2$, as well as for several variants of the Steiner tree problem. Our lower bounds are based on a rich variety of constructions that leverage novel observations, and reductions among problems that are specialized for the CONGEST model. However, for several additional approximation problems, as well as for exact computation of some central problems in $P$, such as maximum matching and max flow, we show that such constructions cannot be designed, by which we exemplify some limitations of this framework.
Solving linear programs is often a challenging task in distributed settings. While there are good algorithms for solving packing and covering linear programs in a distributed manner (Kuhn et al.~2006), this is essentially the only class of linear pro
We address the fundamental network design problem of constructing approximate minimum spanners. Our contributions are for the distributed setting, providing both algorithmic and hardness results. Our main hardness result shows that an $alpha$-appro
We present a randomized distributed algorithm that computes a $Delta$-coloring in any non-complete graph with maximum degree $Delta geq 4$ in $O(log Delta) + 2^{O(sqrt{loglog n})}$ rounds, as well as a randomized algorithm that computes a $Delta$-col
Reconfiguration schedules, i.e., sequences that gradually transform one solution of a problem to another while always maintaining feasibility, have been extensively studied. Most research has dealt with the decision problem of whether a reconfigurati
This document is an informal bibliography of the papers dealing with distributed approximation algorithms. A classic setting for such algorithms is bounded degree graphs, but there is a whole set of techniques that have been developed for other class