ﻻ يوجد ملخص باللغة العربية
This document is an informal bibliography of the papers dealing with distributed approximation algorithms. A classic setting for such algorithms is bounded degree graphs, but there is a whole set of techniques that have been developed for other classes. These later classes are the focus of the current work. These classes have a geometric nature (planar, bounded genus and unit-disk graphs) and/or have bounded parameters (arboricity, expansion, growth, independence) or forbidden structures (forbidden minors).
We address the fundamental network design problem of constructing approximate minimum spanners. Our contributions are for the distributed setting, providing both algorithmic and hardness results. Our main hardness result shows that an $alpha$-appro
Solving linear programs is often a challenging task in distributed settings. While there are good algorithms for solving packing and covering linear programs in a distributed manner (Kuhn et al.~2006), this is essentially the only class of linear pro
We investigate graph problems in the following setting: we are given a graph $G$ and we are required to solve a problem on $G^2$. While we focus mostly on exploring this theme in the distributed CONGEST model, we show new results and surprising conne
The minimum degree spanning tree (MDST) problem requires the construction of a spanning tree $T$ for graph $G=(V,E)$ with $n$ vertices, such that the maximum degree $d$ of $T$ is the smallest among all spanning trees of $G$. In this paper, we present
In the minimum $k$-edge-connected spanning subgraph ($k$-ECSS) problem the goal is to find the minimum weight subgraph resistant to up to $k-1$ edge failures. This is a central problem in network design, and a natural generalization of the minimum sp