ﻻ يوجد ملخص باللغة العربية
Deep neural networks (DNNs) have great expressive power, which can even memorize samples with wrong labels. It is vitally important to reiterate robustness and generalization in DNNs against label corruption. To this end, this paper studies the 0-1 loss, which has a monotonic relationship with an empirical adversary (reweighted) risk~citep{hu2016does}. Although the 0-1 loss has some robust properties, it is difficult to optimize. To efficiently optimize the 0-1 loss while keeping its robust properties, we propose a very simple and efficient loss, i.e. curriculum loss (CL). Our CL is a tighter upper bound of the 0-1 loss compared with conventional summation based surrogate losses. Moreover, CL can adaptively select samples for model training. As a result, our loss can be deemed as a novel perspective of curriculum sample selection strategy, which bridges a connection between curriculum learning and robust learning. Experimental results on benchmark datasets validate the robustness of the proposed loss.
We study the problem of robust reinforcement learning under adversarial corruption on both rewards and transitions. Our attack model assumes an textit{adaptive} adversary who can arbitrarily corrupt the reward and transition at every step within an e
Robustness to label noise is a critical property for weakly-supervised classifiers trained on massive datasets. Robustness to label noise is a critical property for weakly-supervised classifiers trained on massive datasets. In this paper, we first de
Deep neural networks (DNNs) exhibit great success on many tasks with the help of large-scale well annotated datasets. However, labeling large-scale data can be very costly and error-prone so that it is difficult to guarantee the annotation quality (i
We initiate the study of multi-stage episodic reinforcement learning under adversarial corruptions in both the rewards and the transition probabilities of the underlying system extending recent results for the special case of stochastic bandits. We p
Robust loss minimization is an important strategy for handling robust learning issue on noisy labels. Current robust loss functions, however, inevitably involve hyperparameter(s) to be tuned, manually or heuristically through cross validation, which