ترغب بنشر مسار تعليمي؟ اضغط هنا

MR-GNN: Multi-Resolution and Dual Graph Neural Network for Predicting Structured Entity Interactions

88   0   0.0 ( 0 )
 نشر من قبل Nuo Xu
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

Predicting interactions between structured entities lies at the core of numerous tasks such as drug regimen and new material design. In recent years, graph neural networks have become attractive. They represent structured entities as graphs and then extract features from each individual graph using graph convolution operations. However, these methods have some limitations: i) their networks only extract features from a fix-sized subgraph structure (i.e., a fix-sized receptive field) of each node, and ignore features in substructures of different sizes, and ii) features are extracted by considering each entity independently, which may not effectively reflect the interaction between two entities. To resolve these problems, we present MR-GNN, an end-to-end graph neural network with the following features: i) it uses a multi-resolution based architecture to extract node features from different neighborhoods of each node, and, ii) it uses dual graph-state long short-term memory networks (L-STMs) to summarize local features of each graph and extracts the interaction features between pairwise graphs. Experiments conducted on real-world datasets show that MR-GNN improves the prediction of state-of-the-art methods.



قيم البحث

اقرأ أيضاً

Entity interaction prediction is essential in many important applications such as chemistry, biology, material science, and medical science. The problem becomes quite challenging when each entity is represented by a complex structure, namely structur ed entity, because two types of graphs are involved: local graphs for structured entities and a global graph to capture the interactions between structured entities. We observe that existing works on structured entity interaction prediction cannot properly exploit the unique graph of graphs model. In this paper, we propose a Graph of Graphs Neural Network, namely GoGNN, which extracts the features in both structured entity graphs and the entity interaction graph in a hierarchical way. We also propose the dual-attention mechanism that enables the model to preserve the neighbor importance in both levels of graphs. Extensive experiments on real-world datasets show that GoGNN outperforms the state-of-the-art methods on two representative structured entity interaction prediction tasks: chemical-chemical interaction prediction and drug-drug interaction prediction. Our code is available at Github.
Graph neural networks (GNN) has been successfully applied to operate on the graph-structured data. Given a specific scenario, rich human expertise and tremendous laborious trials are usually required to identify a suitable GNN architecture. It is bec ause the performance of a GNN architecture is significantly affected by the choice of graph convolution components, such as aggregate function and hidden dimension. Neural architecture search (NAS) has shown its potential in discovering effective deep architectures for learning tasks in image and language modeling. However, existing NAS algorithms cannot be directly applied to the GNN search problem. First, the search space of GNN is different from the ones in existing NAS work. Second, the representation learning capacity of GNN architecture changes obviously with slight architecture modifications. It affects the search efficiency of traditional search methods. Third, widely used techniques in NAS such as parameter sharing might become unstable in GNN. To bridge the gap, we propose the automated graph neural networks (AGNN) framework, which aims to find an optimal GNN architecture within a predefined search space. A reinforcement learning based controller is designed to greedily validate architectures via small steps. AGNN has a novel parameter sharing strategy that enables homogeneous architectures to share parameters, based on a carefully-designed homogeneity definition. Experiments on real-world benchmark datasets demonstrate that the GNN architecture identified by AGNN achieves the best performance, comparing with existing handcrafted models and tradistional search methods.
Traffic forecasting is a core element of intelligent traffic monitoring system. Approaches based on graph neural networks have been widely used in this task to effectively capture spatial and temporal dependencies of road networks. However, these app roaches can not effectively define the complicated network topology. Besides, their cascade network structures have limitations in transmitting distinct features in the time and space dimensions. In this paper, we propose a Multi-adaptive Spatiotemporal-flow Graph Neural Network (MAF-GNN) for traffic speed forecasting. MAF-GNN introduces an effective Multi-adaptive Adjacency Matrices Mechanism to capture multiple latent spatial dependencies between traffic nodes. Additionally, we propose Spatiotemporal-flow Modules aiming to further enhance feature propagation in both time and space dimensions. MAF-GNN achieves better performance than other models on two real-world datasets of public traffic network, METR-LA and PeMS-Bay, demonstrating the effectiveness of the proposed approach.
In graph neural networks (GNNs), message passing iteratively aggregates nodes information from their direct neighbors while neglecting the sequential nature of multi-hop node connections. Such sequential node connections e.g., metapaths, capture crit ical insights for downstream tasks. Concretely, in recommender systems (RSs), disregarding these insights leads to inadequate distillation of collaborative signals. In this paper, we employ collaborative subgraphs (CSGs) and metapaths to form metapath-aware subgraphs, which explicitly capture sequential semantics in graph structures. We propose metatextbf{P}ath and textbf{E}ntity-textbf{A}ware textbf{G}raph textbf{N}eural textbf{N}etwork (PEAGNN), which trains multilayer GNNs to perform metapath-aware information aggregation on such subgraphs. This aggregated information from different metapaths is then fused using attention mechanism. Finally, PEAGNN gives us the representations for node and subgraph, which can be used to train MLP for predicting score for target user-item pairs. To leverage the local structure of CSGs, we present entity-awareness that acts as a contrastive regularizer on node embedding. Moreover, PEAGNN can be combined with prominent layers such as GAT, GCN and GraphSage. Our empirical evaluation shows that our proposed technique outperforms competitive baselines on several datasets for recommendation tasks. Further analysis demonstrates that PEAGNN also learns meaningful metapath combinations from a given set of metapaths.
Entity alignment typically suffers from the issues of structural heterogeneity and limited seed alignments. In this paper, we propose a novel Multi-channel Graph Neural Network model (MuGNN) to learn alignment-oriented knowledge graph (KG) embeddings by robustly encoding two KGs via multiple channels. Each channel encodes KGs via different relation weighting schemes with respect to self-attention towards KG completion and cross-KG attention for pruning exclusive entities respectively, which are further combined via pooling techniques. Moreover, we also infer and transfer rule knowledge for completing two KGs consistently. MuGNN is expected to reconcile the structural differences of two KGs, and thus make better use of seed alignments. Extensive experiments on five publicly available datasets demonstrate our superior performance (5% Hits@1 up on average).

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا