ﻻ يوجد ملخص باللغة العربية
At present, cryptocurrencies have become a global phenomenon in financial sectors as it is one of the most traded financial instruments worldwide. Cryptocurrency is not only one of the most complicated and abstruse fields among financial instruments, but it is also deemed as a perplexing problem in finance due to its high volatility. This paper makes an attempt to apply machine learning techniques on the index and constituents of cryptocurrency with a goal to predict and forecast prices thereof. In particular, the purpose of this paper is to predict and forecast the close (closing) price of the cryptocurrency index 30 and nine constituents of cryptocurrencies using machine learning algorithms and models so that, it becomes easier for people to trade these currencies. We have used several machine learning techniques and algorithms and compared the models with each other to get the best output. We believe that our work will help reduce the challenges and difficulties faced by people, who invest in cryptocurrencies. Moreover, the obtained results can play a major role in cryptocurrency portfolio management and in observing the fluctuations in the prices of constituents of cryptocurrency market. We have also compared our approach with similar state of the art works from the literature, where machine learning approaches are considered for predicting and forecasting the prices of these currencies. In the sequel, we have found that our best approach presents better and competitive results than the best works from the literature thereby advancing the state of the art. Using such prediction and forecasting methods, people can easily understand the trend and it would be even easier for them to trade in a difficult and challenging financial instrument like cryptocurrency.
The Black-Scholes Option pricing model (BSOPM) has long been in use for valuation of equity options to find the prices of stocks. In this work, using BSOPM, we have come up with a comparative analytical approach and numerical technique to find the pr
The present study aims to establish the model of the cryptocurrency price trend based on financial theory using the LSTM model with multiple combinations between the window length and the predicting horizons, the random walk model is also applied with different parameter settings.
Stock price prediction is a challenging task, but machine learning methods have recently been used successfully for this purpose. In this paper, we extract over 270 hand-crafted features (factors) inspired by technical and quantitative analysis and t
Bitcoin, as one of the most popular cryptocurrency, is recently attracting much attention of investors. Bitcoin price prediction task is consequently a rising academic topic for providing valuable insights and suggestions. Existing bitcoin prediction
This paper presents a deep learning framework based on Long Short-term Memory Network(LSTM) that predicts price movement of cryptocurrencies from trade-by-trade data. The main focus of this study is on predicting short-term price changes in a fixed t