ﻻ يوجد ملخص باللغة العربية
Optical excitation in the cuprates has been shown to induce transient superconducting correlations above the thermodynamic transition temperature, $T_C$, as evidenced by the terahertz frequency optical properties in the non-equilibrium state. In YBa$_2$Cu$_3$O$_{6+x}$ this phenomenon has so far been associated with the nonlinear excitation of certain lattice modes and the creation of new crystal structures. In other compounds, like La$_{2-x}$Ba$_x$CuO$_4$, similar effects were reported also for excitation at near infrared frequencies, and were interpreted as a signature of the melting of competing orders. However, to date it has not been possible to systematically tune the pump frequency widely in any one compound, to comprehensively compare the frequency dependent photo-susceptibility for this phenomenon. Here, we make use of a newly developed optical parametric amplifier, which generates widely tunable high intensity femtosecond pulses, to excite YBa$_2$Cu$_3$O$_{6.5}$ throughout the entire optical spectrum (3 - 750 THz). In the far-infrared region (3 - 25 THz), signatures of non-equilibrium superconductivity are induced only for excitation of the 16.4 THz and 19.2 THz vibrational modes that drive $c$-axis apical oxygen atomic positions. For higher driving frequencies (25 - 750 THz), a second resonance is observed around the charge transfer band edge at ~350 THz. These observations highlight the importance of coupling to the electronic structure of the CuO$_2$ planes, either mediated by a phonon or by charge transfer.
The de Haas-van Alphen effect was observed in the underdoped cuprate YBa$_2$Cu$_3$O$_{6.5}$ via a torque technique in pulsed magnetic fields up to 59 T. Above an irreversibility field of $sim$30 T, the magnetization exhibits clear quantum oscillation
The polarized Raman scattering spectra from freshly cleaved $ab$, $ac$, and $bc$ surfaces of high quality twin free YBa$_2$Cu$_3$O$_{6.5}$ (Ortho-II) single crystals ($T_c$=57.5 K and $Delta T = 0.6$ K) were studied between 80 and 300 K. All eleven $
The possibility of enhancing desirable functional properties of complex materials by optical driving is motivating a series of studies of their nonlinear terahertz response. In high-Tc cuprates, large amplitude excitation of certain infrared-active l
In this paper we explore whether the quantum oscillation signals recently observed in ortho-II YBa$_2$Cu$_3$O$_{6.5}$ may be explained by conventional density functional band-structure theory. Our calculations show that the Fermi surface of YBa$_2$Cu
Nuclear magnetic resonance (NMR) measurements of CuO chains of detwinned Ortho-II YBa$_2$Cu$_3$O$_{6.5}$ (YBCO6.5) single crystals reveal unusual and remarkable properties. The chain Cu resonance broadens significantly, but gradually, on cooling from