ترغب بنشر مسار تعليمي؟ اضغط هنا

Parametrically amplified phase-incoherent superconductivity in YBa$_2$Cu$_3$O$_{6+x}$

124   0   0.0 ( 0 )
 نشر من قبل Michael F\\\"orst
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The possibility of enhancing desirable functional properties of complex materials by optical driving is motivating a series of studies of their nonlinear terahertz response. In high-Tc cuprates, large amplitude excitation of certain infrared-active lattice vibrations has been shown to induce transient features in the reflectivity suggestive of non-equilibrium superconductivity. Yet, a microscopic mechanism for these observations is still lacking. Here, we report measurements of time- and scattering-angle-dependent second-harmonic generation in YBa$_2$Cu$_3$O$_{6+x}$, taken under the same excitation conditions that result in superconductor-like terahertz reflectivity. We discover a three-order-of-magnitude amplification of a 2.5-terahertz electronic mode, which is unique because of its symmetry, momentum, and temperature dependence. A theory for parametric three-wave amplification of Josephson plasmons, which are assumed to be well-formed below T$_c$ but overdamped throughout the pseudogap phase, explains all these observations and provides a mechanism for non-equilibrium superconductivity. More broadly, our work underscores the role of parametric mode mixing to stabilize fluctuating orders in quantum materials.

قيم البحث

اقرأ أيضاً

Polarized and unpolarized neutron diffraction has been used to search for magnetic order in YBa$_2$Cu$_3$O$_{6+x}$ superconductors. Most of the measurements were made on a high quality crystal of YBa$_2$Cu$_3$O$_{6.6}$. It is shown that this crystal has highly ordered ortho-II chain order, and a sharp superconducting transition. Inelastic scattering measurements display a very clean spin-gap and pseudogap with any intensity at 10 meV being 50 times smaller than the resonance intensity. The crystal shows a complicated magnetic order that appears to have three components. A magnetic phase is found at high temperatures that seems to stem from an impurity with a moment that is in the $a$-$b$ plane, but disordered on the crystal lattice. A second ordering occurs near the pseudogap temperature that has a shorter correlation length than the high temperature phase and a moment direction that is at least partly along the c-axis of the crystal. Its moment direction, temperature dependence, and Bragg intensities suggest that it may stem from orbital ordering of the $d$-density wave (DDW) type. An additional intensity increase occurs below the superconducting transition. The magnetic intensity in these phases does not change noticeably in a 7 Tesla magnetic field aligned approximately along the c-axis. Searches for magnetic order in YBa$_2$Cu$_3$O$_{7}$ show no signal while a small magnetic intensity is found in YBa$_2$Cu$_3$O$_{6.45}$ that is consistent with c-axis directed magnetic order. The results are contrasted with other recent neutron measurements.
193 - L. Tassini , W. Prestel , A. Erb 2008
We present results of Raman scattering experiments on tetragonal ${rm (Y_{1-y}Ca_{y})Ba_{2}Cu_{3}O_{6+x}}$ for doping levels $p(x,y)$ between 0 and 0.07 holes/CuO$_2$. Below the onset of superconductivity at $p_{rm sc1} approx 0.06$, we find evidence of a diagonal superstructure. At $p_{rm sc1}$, lattice and electron dynamics change discontinuously with the charge and spin properties being renormalized at all energy scales. The results indicate that charge ordering is intimately related to the transition at $p_{rm sc1}$ and that the maximal transition temperature to superconductivity at optimal doping $T_{c}^{rm max}$ depends on the type of ordering at $p>p_{rm sc1}$.
We report the results a comprehensive study of charge density wave (CDW) correlations in untwinned YBCO6+x single crystals with 0.4<x<0.99 using Cu-L3 edge resonant x-ray scattering (RXS). Evidence of CDW formation is found for 0.45<x<0.93, but not f or samples with x<0.44 that exhibit incommensurate spin-density-wave order, and in slightly overdoped samples with x=0.99. This suggests the presence of two proximate zero-temperature CDW critical points at doping pc1~0.08 and pc2~0.18. The CDW reflections are observed at incommensurate in-plane wave vectors (d_a, 0) and (0, d_b). Both decrease linearly with increasing doping, in agreement with recent reports on Bi-based high-Tc superconductors, but in sharp contrast to the behavior of the 214 family. The CDW intensity and correlation length exhibit maxima at p~0.12, coincident with a plateau in the superconducting transition temperature Tc. The onset temperature of the CDW reflections depends non-monotonically on p, with a maximum of~160 K for p~0.12. The RXS reflections exhibit a uniaxial intensity anisotropy. We further observe a depression of CDW correlations upon cooling below Tc, and (for samples with p> 0.09) an enhancement of the signal when an external magnetic field up to 6 T is applied in the superconducting state. For samples with p~0.08, where prior work has revealed a field-enhancement of incommensurate magnetic order, the RXS signal is field-independent. This supports a previously suggested scenario in which incommensurate charge and spin orders compete against each other, in addition to individually competing against. We discuss the relationship of these results to stripe order 214, the pseudogap phenomenon, superconducting fluctuations, and quantum oscillations.
Non-linear interactions between collective modes play a definitive role in far out of equilibrium dynamics of strongly correlated electron systems. Understanding and utilizing these interactions is crucial to photo-control of quantum many-body states . One of the most surprising examples of strong mode coupling is the interaction between apical oxygen phonons and Josephson plasmons in bilayer YBa$_2$Cu$_3$O$_{6+x}$ superconductors. Experiments by Hu et al (2014). and Kaiser et al. (2014) showed that below Tc, photo-excitation of phonons leads to enhancement and frequency shifts of Josephson plasmon edges, while aboveTc, photo-excited phonons induce plasmon edges even when there are no discernible features in the equilibrium reflectivity spectrum. Recent experiments by Van Hoegen et al. (2019) also observed parametric generation of Josephson plasmons from photo-excited phonons both below Tc and in the pseudogap phase. In this paper we present a theoretical model of phonon-plasmon three wave interaction arising from coupling between the oxygen motion and the in-plane superfluid stiffness. Analysis of the parametric instability of plasmons based on this model gives frequencies of the most unstable plasmons that are in agreement with experimental observations. We also discuss how strong parametric excitation of Josephson plasmons can explain pump induced changes in the TeraHertz reflectivity of YBa$_2$Cu$_3$O$_{6+x}$ in the superconducting state, including frequency shifts and sharpening of Josephson plasmon edges, as well as appearance of a new peak around 2THz. An interesting feature of this model is that overdamped Josephson plasmons do not give any discernible features in reflectivity in equilibrium, but can develop plasmon edges when parametrically excited. We suggest that this mechanism explains photo-induced plasmon edges in the pseudogap phase of YBa$_2$Cu$_3$O$_{6+x}$.
Polarized and unpolarized neutron triple-axis spectrometry was used to study the dynamical magnetic susceptibility $chi^{primeprime}({bf q},omega)$ as a function of energy ($hbaromega$) and wave vector (${bf q}$) in a wide temperature range for the b ilayer superconductor YBa$_2$Cu$_3$O$_{6+x}$ with oxygen concentrations, $x$, of 0.45, 0.5, 0.6, 0.7, 0.8, 0.93, and 0.95. The most prominent features in the magnetic spectra include a spin gap in the superconducting state, a pseudogap in the normal state, the much-discussed resonance, and incommensurate spin fluctuations below the resonance. We establish the doping dependence of the spin gap in the superconducting state, the resonance energy, and the incommensurability of the spin fluctuations. We discuss in detail the procedure used for separating the magnetic scattering from phonon and other spurious effects. In the comparison of our experimental results with various microscopic theoretical models, particular emphasis was made to address the similarities and differences in the spin fluctuations of YBa$_2$Cu$_3$O$_{6+x}$ and La$_{2-x}$Sr$_x$CuO$_4$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا