ترغب بنشر مسار تعليمي؟ اضغط هنا

Fluid pumping and active flexoelectricity can promote lumen nucleation in cell assemblies

192   0   0.0 ( 0 )
 نشر من قبل Charlie Duclut
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss the physical mechanisms that promote or suppress the nucleation of a fluid-filled lumen inside a cell assembly or a tissue. We discuss lumen formation in a continuum theory of tissue material properties in which the tissue is described as a two-fluid system to account for its permeation by the interstitial fluid, and we include fluid pumping as well as active electric effects. Considering a spherical geometry and a polarized tissue, our work shows that fluid pumping and tissue flexoelectricity play a crucial role in lumen formation. We furthermore explore the large variety of long-time states that are accessible for the cell aggregate and its lumen. Our work reveals a role of the coupling of mechanical, electrical and hydraulic phenomena in tissue lumen formation.



قيم البحث

اقرأ أيضاً

Bacterial processes ranging from gene expression to motility and biofilm formation are constantly challenged by internal and external noise. While the importance of stochastic fluctuations has been appreciated for chemotaxis, it is currently believed that deterministic long-range fluid dynamical effects govern cell-cell and cell-surface scattering - the elementary events that lead to swarming and collective swimming in active suspensions and to the formation of biofilms. Here, we report the first direct measurements of the bacterial flow field generated by individual swimming Escherichia coli both far from and near to a solid surface. These experiments allowed us to examine the relative importance of fluid dynamics and rotational diffusion for bacteria. For cell-cell interactions it is shown that thermal and intrinsic stochasticity drown the effects of long-range fluid dynamics, implying that physical interactions between bacteria are determined by steric collisions and near-field lubrication forces. This dominance of short-range forces closely links collective motion in bacterial suspensions to self-organization in driven granular systems, assemblages of biofilaments, and animal flocks. For the scattering of bacteria with surfaces, long-range fluid dynamical interactions are also shown to be negligible before collisions; however, once the bacterium swims along the surface within a few microns after an aligning collision, hydrodynamic effects can contribute to the experimentally observed, long residence times. As these results are based on purely mechanical properties, they apply to a wide range of microorganisms.
83 - Kirsty Y. Wan 2019
Living creatures exhibit a remarkable diversity of locomotion mechanisms, evolving structures specialised for interacting with their environment. In the vast majority of cases, locomotor behaviours such as flying, crawling, and running, are orchestra ted by nervous systems. Surprisingly, microorganisms can enact analogous movement gaits for swimming using multiple, fast-moving cellular protrusions called cilia and flagella. Here, I demonstrate intermittency, reversible rhythmogenesis, and gait mechanosensitivity in algal flagella, to reveal the active nature of locomotor patterning. In addition to maintaining free-swimming gaits, I show that the algal flagellar apparatus functions as a central pattern generator which encodes the beating of each flagellum in a network in a distinguishable manner. The latter provides a novel symmetry-breaking mechanism for cell reorientation. These findings imply that the capacity to generate and coordinate complex locomotor patterns does not require neural circuitry but rather the minimal ingredients are present in simple unicellular organisms.
We investigate the mechanical interplay between the spatial organization of the actin cytoskeleton and the shape of animal cells adhering on micropillar arrays. Using a combination of analytical work, computer simulations and in vitro experiments, we demonstrate that the orientation of the stress fibers strongly influences the geometry of the cell edge. In the presence of a uniformly aligned cytoskeleton, the cell edge can be well approximated by elliptical arcs, whose eccentricity reflects the degree of anisotropy of the cells internal stresses. Upon modeling the actin cytoskeleton as a nematic liquid crystal, we further show that the geometry of the cell edge feeds back on the organization of the stress fibers by altering the length scale at which these are confined. This feedback mechanism is controlled by a dimensionless number, the anchoring number, representing the relative weight of surface-anchoring and bulk-aligning torques. Our model allows to predict both cellular shape and the internal structure of the actin cytoskeleton and is in good quantitative agreement with experiments on fibroblastoid (GD$beta$1,GD$beta$3) and epithelioid (GE$beta$1, GE$beta$3) cells.
Gaining access to the cell interior is fundamental for many applications, such as electrical recording, drug and biomolecular delivery. A very promising technique consists of culturing cells on nano/micro pillars. The tight adhesion and high local de formation of cells in contact with nanostructures can promote the permeabilization of lipids at the plasma membrane, providing access to the internal compartment. However, there is still much experimental controversy regarding when and how the intracellular environment is targeted and the role of the geometry and interactions with surfaces. Consequently, we investigated, by coarse-grained molecular dynamics simulations of the cell membrane, the mechanical properties of the lipid bilayer under high strain and bending conditions. We found out that a high curvature of the lipid bilayer dramatically lowers the traction force necessary to achieve membrane rupture. Afterwards, we experimentally studied the permeabilization rate of cell membrane by pillars with comparable aspect ratios but different sharpness values at the edges. The experimental data support the simulation results: even pillars with diameters in the micron range may cause local membrane disruption when their edges are sufficiently sharp. Therefore, the permeabilization likelihood is connected to the local geometric features of the pillars rather than diameter or aspect ratio. The present study can also provide significant contributions to the design of 3D biointerfaces for tissue engineering and cellular growth.
The near-surface swimming patterns of bacteria are strongly determined by the hydrodynamic interactions between bacteria and the surface, which trap bacteria in smooth circular trajectories that lead to inefficient surface exploration. Here, we show by combining experiments and a data-driven mathematical model that surface exploration of enterohemorrhagic Escherichia coli (EHEC) -- a pathogenic strain of E. coli causing serious illnesses such as bloody diarrhea -- results from a complex interplay between motility and transient surface adhesion events. These events allow EHEC to break the smooth circular trajectories and regulate their transport properties by the use stop-adhesion events that lead to a characteristic intermittent motion on surfaces. We find that the experimentally measured frequency of stop-adhesion events in EHEC is located at the value predicted by the developed mathematical model that maximizes bacterial surface diffusivity. We indicate that these results and the developed model apply to other bacterial strains on different surfaces, which suggests that swimming bacteria use transient adhesion to regulate surface motion.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا