ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-equilibrium probability flux of a thermally driven micromachine

87   0   0.0 ( 0 )
 نشر من قبل Isamu Sou
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss the non-equilibrium statistical mechanics of a thermally driven micromachine consisting of three spheres and two harmonic springs [Y. Hosaka et al., J. Phys. Soc. Jpn. 86, 113801 (2017)]. We obtain the non-equilibrium steady state probability distribution function of such a micromachine and calculate its probability flux in the corresponding configuration space. The resulting probability flux can be expressed in terms of a frequency matrix that is used to distinguish between a non-equilibrium steady state and a thermal equilibrium state satisfying detailed balance. The frequency matrix is shown to be proportional to the temperature difference between the spheres. We obtain a linear relation between the eigenvalue of the frequency matrix and the average velocity of a thermally driven micromachine that can undergo a directed motion in a viscous fluid. This relation is consistent with the scallop theorem for a deterministic three-sphere microswimmer.



قيم البحث

اقرأ أيضاً

We discuss the non-equilibrium properties of a thermally driven micromachine consisting of three spheres which are in equilibrium with independent heat baths characterized by different temperatures. Within the framework of a linear stochastic Langevi n description, we calculate the time-dependent average irreversibility that takes a maximum value for a finite time. This time scale is roughly set by the spring relaxation time. The steady-state average entropy production rate is obtained in terms of the temperatures and the friction coefficients of the spheres. The average entropy production rate depends on thermal and/or mechanical asymmetry of a three-sphere micromachine. We also obtain the center of mass diffusion coefficient of a thermally driven three-sphere micromachine as a function of different temperatures and friction coefficients. With the results of the total entropy production rate and the diffusion coefficient, we finally discuss the efficiency of a thermally driven micromachine.
Systems kept out of equilibrium in stationary states by an external source of energy store an energy $Delta U=U-U_0$. $U_0$ is the internal energy at equilibrium state, obtained after the shutdown of energy input. We determine $Delta U$ for two model systems: ideal gas and Lennard-Jones fluid. $Delta U$ depends not only on the total energy flux, $J_U$, but also on the mode of energy transfer into the system. We use three different modes of energy transfer where: the energy flux per unit volume is (i) constant; (ii) proportional to the local temperature (iii) proportional to the local density. We show that $Delta U /J_U=tau$ is minimized in the stationary states formed in these systems, irrespective of the mode of energy transfer. $tau$ is the characteristic time scale of energy outflow from the system immediately after the shutdown of energy flux. We prove that $tau$ is minimized in stable states of the Rayleigh-Benard cell.
Life has most likely originated as a consequence of processes taking place in non-equilibrium conditions (textit{e.g.} in the proximity of deep-sea thermal vents) selecting states of matter that would have been otherwise unfavorable at equilibrium. H ere we present a simple chemical network in which the selection of states is driven by the thermodynamic necessity of dissipating heat as rapidly as possible in the presence of a thermal gradient: states participating to faster reactions contribute the most to the dissipation rate, and are the most populated ones in non-equilibrium steady-state conditions. Building upon these results, we show that, as the complexity of the chemical network increases, the textit{velocity} of the reaction path leading to a given state determines its selection, giving rise to non-trivial localization phenomena in state space. A byproduct of our studies is that, in the presence of a temperature gradient, thermophoresis-like behavior inevitably appears depending on the transport properties of each individual state, thus hinting at a possible microscopic explanation of this intriguing yet still not fully understood phenomenon.
We discovered an out-of-equilibrium transition in the ideal gas between two walls, divided by an inner, adiabatic, movable wall. The system is driven out-of-equilibrium by supplying energy directly into the volume of the gas. At critical heat flux, w e have found a continuous transition to the state with a low-density, hot gas on one side of the movable wall and a dense, cold gas on the other side. Molecular dynamic simulations of the soft-sphere fluid confirm the existence of the transition in the interacting system. We introduce a stationary state Helmholtz-like function whose minimum determines the stable positions of the internal wall. This transition can be used as a paradigm of transitions in stationary states and the Helmholtz-like function as a paradigm of the thermodynamic description of these states.
65 - Sangyun Lee , Chulan Kwon 2019
We investigate a motion of a colloid in a harmonic trap driven out of equilibrium by an external non-conservative force producing a torque in the presence of a uniform magnetic field. We find that steady state exists only for a proper range of parame ters such as mass, viscosity coefficient, and stiffness of the harmonic potential, and the magnetic field, which is not observed in the overdamped limit. We derive the existence condition for the steady state. We examine the combined influence of the non-conservative force and the magnetic field on non-equilibrium characteristics such as non-Boltzmann steady-state probability distribution function, probability currents, entropy production, position-velocity correlation, and violation of fluctuation-dissipation relation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا