ﻻ يوجد ملخص باللغة العربية
We discuss the non-equilibrium statistical mechanics of a thermally driven micromachine consisting of three spheres and two harmonic springs [Y. Hosaka et al., J. Phys. Soc. Jpn. 86, 113801 (2017)]. We obtain the non-equilibrium steady state probability distribution function of such a micromachine and calculate its probability flux in the corresponding configuration space. The resulting probability flux can be expressed in terms of a frequency matrix that is used to distinguish between a non-equilibrium steady state and a thermal equilibrium state satisfying detailed balance. The frequency matrix is shown to be proportional to the temperature difference between the spheres. We obtain a linear relation between the eigenvalue of the frequency matrix and the average velocity of a thermally driven micromachine that can undergo a directed motion in a viscous fluid. This relation is consistent with the scallop theorem for a deterministic three-sphere microswimmer.
We discuss the non-equilibrium properties of a thermally driven micromachine consisting of three spheres which are in equilibrium with independent heat baths characterized by different temperatures. Within the framework of a linear stochastic Langevi
Systems kept out of equilibrium in stationary states by an external source of energy store an energy $Delta U=U-U_0$. $U_0$ is the internal energy at equilibrium state, obtained after the shutdown of energy input. We determine $Delta U$ for two model
Life has most likely originated as a consequence of processes taking place in non-equilibrium conditions (textit{e.g.} in the proximity of deep-sea thermal vents) selecting states of matter that would have been otherwise unfavorable at equilibrium. H
We discovered an out-of-equilibrium transition in the ideal gas between two walls, divided by an inner, adiabatic, movable wall. The system is driven out-of-equilibrium by supplying energy directly into the volume of the gas. At critical heat flux, w
We investigate a motion of a colloid in a harmonic trap driven out of equilibrium by an external non-conservative force producing a torque in the presence of a uniform magnetic field. We find that steady state exists only for a proper range of parame