ترغب بنشر مسار تعليمي؟ اضغط هنا

One-Shot Texture Retrieval with Global Context Metric

289   0   0.0 ( 0 )
 نشر من قبل Kai Zhu
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we tackle one-shot texture retrieval: given an example of a new reference texture, detect and segment all the pixels of the same texture category within an arbitrary image. To address this problem, we present an OS-TR network to encode both reference and query image, leading to achieve texture segmentation towards the reference category. Unlike the existing texture encoding methods that integrate CNN with orderless pooling, we propose a directionality-aware module to capture the texture variations at each direction, resulting in spatially invariant representation. To segment new categories given only few examples, we incorporate a self-gating mechanism into relation network to exploit global context information for adjusting per-channel modulation weights of local relation features. Extensive experiments on benchmark texture datasets and real scenarios demonstrate the above-par segmentation performance and robust generalization across domains of our proposed method.



قيم البحث

اقرأ أيضاً

We introduce one-shot texture segmentation: the task of segmenting an input image containing multiple textures given a patch of a reference texture. This task is designed to turn the problem of texture-based perceptual grouping into an objective benc hmark. We show that it is straight-forward to generate large synthetic data sets for this task from a relatively small number of natural textures. In particular, this task can be cast as a self-supervised problem thereby alleviating the need for massive amounts of manually annotated data necessary for traditional segmentation tasks. In this paper we introduce and study two concrete data sets: a dense collage of textures (CollTex) and a cluttered texturized Omniglot data set. We show that a baseline model trained on these synthesized data is able to generalize to natural images and videos without further fine-tuning, suggesting that the learned image representations are useful for higher-level vision tasks.
The last few years have witnessed the great success of non-linear generative models in synthesizing high-quality photorealistic face images. Many recent 3D facial texture reconstruction and pose manipulation from a single image approaches still rely on large and clean face datasets to train image-to-image Generative Adversarial Networks (GANs). Yet the collection of such a large scale high-resolution 3D texture dataset is still very costly and difficult to maintain age/ethnicity balance. Moreover, regression-based approaches suffer from generalization to the in-the-wild conditions and are unable to fine-tune to a target-image. In this work, we propose an unsupervised approach for one-shot 3D facial texture completion that does not require large-scale texture datasets, but rather harnesses the knowledge stored in 2D face generators. The proposed approach rotates an input image in 3D and fill-in the unseen regions by reconstructing the rotated image in a 2D face generator, based on the visible parts. Finally, we stitch the most visible textures at different angles in the UV image-plane. Further, we frontalize the target image by projecting the completed texture into the generator. The qualitative and quantitative experiments demonstrate that the completed UV textures and frontalized images are of high quality, resembles the original identity, can be used to train a texture GAN model for 3DMM fitting and improve pose-invariant face recognition.
398 - Haofei Kuang , Yi Zhu , Zhi Zhang 2021
Contrastive learning has revolutionized self-supervised image representation learning field, and recently been adapted to video domain. One of the greatest advantages of contrastive learning is that it allows us to flexibly define powerful loss objec tives as long as we can find a reasonable way to formulate positive and negative samples to contrast. However, existing approaches rely heavily on the short-range spatiotemporal salience to form clip-level contrastive signals, thus limit themselves from using global context. In this paper, we propose a new video-level contrastive learning method based on segments to formulate positive pairs. Our formulation is able to capture global context in a video, thus robust to temporal content change. We also incorporate a temporal order regularization term to enforce the inherent sequential structure of videos. Extensive experiments show that our video-level contrastive learning framework (VCLR) is able to outperform previous state-of-the-arts on five video datasets for downstream action classification, action localization and video retrieval. Code is available at https://github.com/amazon-research/video-contrastive-learning.
Offline Siamese networks have achieved very promising tracking performance, especially in accuracy and efficiency. However, they often fail to track an object in complex scenes due to the incapacity in online update. Traditional updaters are difficul t to process the irregular variations and sampling noises of objects, so it is quite risky to adopt them to update Siamese networks. In this paper, we first present a two-stage one-shot learner, which can predict the local parameters of primary classifier with object samples from diverse stages. Then, an updatable Siamese network is proposed based on the learner (SiamTOL), which is able to complement online update by itself. Concretely, we introduce an extra inputting branch to sequentially capture the latest object features, and design a residual module to update the initial exemplar using these features. Besides, an effective multi-aspect training loss is designed for our network to avoid overfit. Extensive experimental results on several popular benchmarks including OTB100, VOT2018, VOT2019, LaSOT, UAV123 and GOT10k manifest that the proposed tracker achieves the leading performance and outperforms other state-of-the-art methods
We present a scene parsing method that utilizes global context information based on both the parametric and non- parametric models. Compared to previous methods that only exploit the local relationship between objects, we train a context network base d on scene similarities to generate feature representations for global contexts. In addition, these learned features are utilized to generate global and spatial priors for explicit classes inference. We then design modules to embed the feature representations and the priors into the segmentation network as additional global context cues. We show that the proposed method can eliminate false positives that are not compatible with the global context representations. Experiments on both the MIT ADE20K and PASCAL Context datasets show that the proposed method performs favorably against existing methods.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا