ﻻ يوجد ملخص باللغة العربية
We report a detailed experimental study of the band structure of the recently discovered topological material $textrm{Hf}_{2}textrm{Te}_2textrm{P}$. Using the combination of scanning tunneling spectroscopy and angle-resolved photo-emission spectroscopy with surface K-doping, we probe the band structure of $textrm{Hf}_{2}textrm{Te}_2textrm{P}$ with energy and momentum resolution above the Fermi level. Our experiments show the presence of multiple surface states with a linear Dirac-like dispersion, consistent with the predictions from previously reported band structure calculations. In particular, scanning tunneling spectroscopy measurements provide the first experimental evidence for the strong topological surface state predicted at 460 meV, which stems from the band inversion between Hf-d and Te-p orbitals. This band inversion comprised of more localized d-states could result in a better surface-to-bulk conductance ratio relative to more traditional topological insulators.
We study the electronic properties of the $textrm{Fe}textrm{Se}_{1-x}textrm{Te}_x$ system ($x=0$, 0.25, 0.5, 0.75, and 1) from the perspective of X-ray spectroscopy and density functional theory (DFT). The analysis performed on the density of states
The La-based 214 cuprates host several symmetry breaking phases including superconductivity, charge and spin order in the form of stripes, and a structural othorhombic-to-tetragonal phase transition. Therefore, these materials are an ideal system to
The unoccupied part of the band structure in the magnetic topological insulator MnBi$_2$Te$_4$ is studied by first-principles calculations. We find a second, unoccupied topological surface state with similar electronic structure to the celebrated occ
We report a high-field magnetotransport study on selected low-carrier crystals of the topological insulator Bi$_{2-x}$Sb${_x}$Te$_{3-y}$Se$_{y}$. Monochromatic Shubnikov - de Haas (SdH) oscillations are observed at 4.2~K and their two-dimensional nat
Helical spin textures with the marked spin polarizations of topological surface states have been firstly unveiled by the state-of-the-art spin- and angle-resolved photoemission spectroscopy for two promising topological insulators Bi$_2$Te$_2$Se and