ﻻ يوجد ملخص باللغة العربية
We report a high-field magnetotransport study on selected low-carrier crystals of the topological insulator Bi$_{2-x}$Sb${_x}$Te$_{3-y}$Se$_{y}$. Monochromatic Shubnikov - de Haas (SdH) oscillations are observed at 4.2~K and their two-dimensional nature is confirmed by tilting the magnetic field with respect to the sample surface. With help of Lifshitz-Kosevich theory, important transport parameters of the surface states are obtained, including the carrier density, cyclotron mass and mobility. For $(x,y)=(0.50,1.3)$ the Landau level plot is analyzed in terms of a model based on a topological surface state in the presence of a non-ideal linear dispersion relation and a Zeeman term with $g_s = 70$ or $-54$. Input parameters were taken from the electronic dispersion relation measured directly by angle resolved photoemission spectroscopy on crystals from the same batch. The Hall resistivity of the same crystal (thickness of 40~$mu$m) is analyzed in a two-band model, from which we conclude that the ratio of the surface conductance to the total conductance amounts to 32~%.
In 3D topological insulators achieving a genuine bulk-insulating state is an important research topic. Recently, the material system (Bi,Sb)$_{2}$(Te,Se)$_{3}$ (BSTS) has been proposed as a topological insulator with high resistivity and a low carrie
We show Shubnikov-de Haas oscillations in topological insulator (Bi$_{x}$Sb$_{1-x}$)$_{2}$Te$_{3}$ films whose carrier type is p-type (x = 0.29, 0.34) and n-type (x = 0.42). The physical properties such as the Berry phase, mobility, and the scatterin
The idea of employing non-Abelian statistics for error-free quantum computing ignited interest in recent reports of topological surface superconductivity and Majorana zero modes (MZMs) in FeTe$_{0.55}$Se$_{0.45}$. An associated puzzle is that the top
Using magneto-infrared spectroscopy, we have explored the charge dynamics of (Bi,Sb)$_2$Te$_3$ thin films on InP substrates. From the magneto-transmission data we extracted three distinct cyclotron resonance (CR) energies that are all apparent in the
A topological p-n junction (TPNJ) is an important concept to control spin and charge transport on a surface of three dimensional topological insulators (3D-TIs). Here we report successful fabrication of such TPNJ on a surface of 3D-TI Bi$_{2-x}$Sb$_x