ترغب بنشر مسار تعليمي؟ اضغط هنا

Roadmap on Material-Function Mapping for Photonic-Electronic Hybrid Neural Networks

112   0   0.0 ( 0 )
 نشر من قبل Mario Miscuglio
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Driven by machine-learning tasks neural networks have demonstrated useful capabilities as nonlinear hypothesis classifiers. The underlying technologies performing the dot product multiplication, the summation, and the nonlinear thresholding on the input data in electronics, however, are limited by the same capacitive challenges known from electronic integrated circuits. The optical domain, in contrast, provides low delay interconnectivity suitable for such node distributed non Von Neumann architectures relying on dense node to node communication. Thus, once the neural networks weights are set, the delay of the network is just given by the time of flight of the photon, which is in the picosecond range for photonic integrated circuits. However, the functionality of memory for storing the trained weights does not exists in optics, thus demanding a fresh look to explore synergies between photonics and electronics in neural networks. Here we provide a roadmap to pave the way for emerging hybridized photonic electronic neural networks by taking a detailed look into a single nodes perceptron, discussing how it can be realized in hybrid photonic electronic heterogeneous technologies. We show that a set of materials exist that exploit synergies with respect to a number of constrains including electronic contacts, memory functionality, electrooptic modulation, optical nonlinearity, and device packaging. We find that the material ITO, in particular, could provide a viable path for both the perceptron weights and the nonlinear activation function, while simultaneously being a foundry process near material. We finally identify a number of challenges that, if solved, could accelerate the adoption of such heterogeneous integration strategies of emerging memory materials into integrated photonics platforms for real time responsive neural networks.



قيم البحث

اقرأ أيضاً

Modern computation based on the von Neumann architecture is today a mature cutting-edge science. In this architecture, processing and memory units are implemented as separate blocks interchanging data intensively and continuously. This data transfer is responsible for a large part of the power consumption. The next generation computer technology is expected to solve problems at the exascale. Even though these future computers will be incredibly powerful, if they are based on von Neumann type architectures, they will consume between 20 and 30 megawatts of power and will not have intrinsic physically built-in capabilities to learn or deal with complex and unstructured data as our brain does. Neuromorphic computing systems are aimed at addressing these needs. The human brain performs about 10^15 calculations per second using 20W and a 1.2L volume. By taking inspiration from biology, new generation computers could have much lower power consumption than conventional processors, could exploit integrated non-volatile memory and logic, and could be explicitly designed to support dynamic learning in the context of complex and unstructured data. Among their potential future applications, business, health care, social security, disease and viruses spreading control might be the most impactful at societal level. This roadmap envisages the potential applications of neuromorphic materials in cutting edge technologies and focuses on the design and fabrication of artificial neural systems. The contents of this roadmap will highlight the interdisciplinary nature of this activity which takes inspiration from biology, physics, mathematics, computer science and engineering. This will provide a roadmap to explore and consolidate new technology behind both present and future applications in many technologically relevant areas.
68 - Gianluca Milano 2019
Acting as artificial synapses, two-terminal memristive devices are considered fundamental building blocks for the realization of artificial neural networks. Organized into large arrays with a top-down approach, memristive devices in conventional cros sbar architecture demonstrated the implementation of brain-inspired computing for supervised and unsupervised learning. Alternative way using unconventional systems consisting of many interacting nano-parts have been proposed for the realization of biologically plausible architectures where the emergent behavior arises from a complexity similar to that of biological neural circuits. However, these systems were unable to demonstrate bio-realistic implementation of synaptic functionalities with spatio-temporal processing of input signals similarly to our brain. Here we report on emergent synaptic behavior of biologically inspired nanoarchitecture based on self-assembled and highly interconnected nanowire (NW) networks realized with a bottom up approach. The operation principle of this system is based on the mutual electrochemical interaction among memristive NWs and NW junctions composing the network and regulating its connectivity depending on the input stimuli. The functional connectivity of the system was shown to be responsible for heterosynaptic plasticity that was experimentally demonstrated and modelled in a multiterminal configuration, where the formation of a synaptic pathway between two neuron terminals is responsible for a variation in synaptic strength also at non-stimulated terminals. These results highlight the ability of nanowire memristive architectures for building brain-inspired intelligent systems based on complex networks able to physically compute the information arising from multi-terminal inputs.
73 - Runze Chen , Chen Li , Yu Li 2020
Magnetic skyrmions have attracted considerable interest, especially after their recent experimental demonstration at room temperature in multilayers. The robustness, nanoscale size and non-volatility of skyrmions have triggered a substantial amount o f research on skyrmion-based low-power, ultra-dense nanocomputing and neuromorphic systems such as artificial synapses. Room-temperature operation is required to integrate skyrmionic synapses in practical future devices. Here, we numerically propose a nanoscale skyrmionic synapse composed of magnetic multilayers that enables room-temperature device operation tailored for optimal synaptic resolution. We demonstrate that when embedding such multilayer skyrmionic synapses in a simple spiking neural network (SNN) with unsupervised learning via the spike-timing-dependent plasticity rule, we can achieve only a 78% classification accuracy in the MNIST handwritten data set under realistic conditions. We propose that this performance can be significantly improved to about 98.61% by using a deep SNN with supervised learning. Our results illustrate that the proposed skyrmionic synapse can be a potential candidate for future energy-efficient neuromorphic edge computing.
We have applied recent machine learning advances, deep convolutional neural network, to three-dimensional (voxels) soft matter data, generated by Molecular Dynamics computer simulation. We have focused on the structural and phase properties of a coar se-grained model of hydrated ionic surfactants. We have trained a classifier able to automatically detect the water quantity absorbed in the system, therefore associating to each hydration level the corresponding most representative nano-structure. Based on the notion of transfer learning, we have next applied the same network to the related polymeric ionomer Nafion, and have extracted a measure of the similarity of these configurations with those above. We demonstrate that on this basis it is possible to express the static structure factor of the polymer at fixed hydration level as a superposition of those of the surfactants at multiple water contents. We suggest that such a procedure can provide a useful, agnostic, data-driven, precise description of the multi-scale structure of disordered materials, without resorting to any a-priori model picture.
Controlling nanostructure from molecular, crystal lattice to the electrode level remains as arts in practice, where nucleation and growth of the crystals still require more fundamental understanding and precise control to shape the microstructure of metal deposits and their properties. This is vital to achieve dendrite-free Li metal anodes with high electrochemical reversibility for practical high-energy rechargeable Li batteries. Here, cryogenic-transmission electron microscopy was used to capture the dynamic growth and atomic structure of Li metal deposits at the early nucleation stage, in which a phase transition from amorphous, disordered states to a crystalline, ordered one was revealed as a function of current density and deposition time. The real-time atomic interaction over wide spatial and temporal scales was depicted by the reactive-molecular dynamics simulations. The results show that the condensation accompanied with the amorphous-to-crystalline phase transition requires sufficient exergy, mobility and time to carry out, contrary to what the classical nucleation theory predicts. These variabilities give rise to different kinetic pathways and temporal evolutions, resulting in various degrees of order and disorder nanostructure in nano-sized domains that dominate in the morphological evolution and reversibility of Li metal electrode. Compared to crystalline Li, amorphous/glassy Li outperforms in cycle life in high-energy rechargeable batteries and is the desired structure to achieve high kinetic stability for long cycle life.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا