ترغب بنشر مسار تعليمي؟ اضغط هنا

Focusing light with a deep parabolic mirror

78   0   0.0 ( 0 )
 نشر من قبل Markus Sondermann
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The smallest possible focus is achieved when the focused wave front is the time reversed copy of the light wave packet emitted from a point in space (S. Quabis et al., Opt. Commun. 179 (2000) 1-7). The best physical implementation of such a pointlike sub-wavelength emitter is a single atom performing an electric dipole transition. In a former paper (N. Lindlein et al., Laser Phys. 17 (2007) 927-934) we showed how such a dipole-like radiant intensity distribution can be produced with the help of a deep parabolic mirror and appropriate shaping of the intensity of the radially polarized incident plane wave. Such a dipole wave only mimics the far field of a linear dipole and not the near field components. Therefore, in this paper, the electric energy density in the focus of a parabolic mirror is calculated using the Debye integral method. Additionally, a comparison with conventional nearly 4pi illumination using two high numerical aperture objectives is performed. The influence of aberrations due to a misalignment of the incident plane wave is discussed.

قيم البحث

اقرأ أيضاً

Focusing with a 4$pi$ parabolic mirror allows for concentrating light from nearly the complete solid angle, whereas focusing with a single microscope objective limits the angle cone used for focusing to half solid angle at maximum. Increasing the sol id angle by using deep parabolic mirrors comes at the cost of adding more complexity to the mirrors fabrication process and might introduce errors that reduce the focusing quality. To determine these errors, we experimentally examine the focusing properties of a 4$pi$ parabolic mirror that was produced by single-point diamond turning. The properties are characterized with a single $^{174}$Yb$^{+}$ ion as a mobile point scatterer. The ion is trapped in a vacuum environment with a movable high optical access Paul trap. We demonstrate an effective focal spot size of 209 nm in lateral and 551 nm in axial direction. Such tight focusing allows us to build an efficient light-matter interface. Our findings agree with numerical simulations incorporating a finite ion temperature and interferometrically measured wavefront aberrations induced by the parabolic mirror. We point at further technological improvements and discuss the general scope of applications of a 4$pi$ parabolic mirror.
An optical pulse asymptotically reaching zero group velocity in tapered waveguides can ultimately stop at a certain position in the taper accompanied by a strong spatial compression. This phenomenon can be also observed in spatio-temporal systems whe re the pulse velocity asymptotically reaches the velocity of a tapered front. The first system is well known from tapered plasmonic waveguides where adiabatic nano-focusing of light is observed. Its counterpart in the spatio-temporal system is the optical push broom effect where a nonlinear front collects and compresses the signal. Here, we use the slowly-varying envelope approximation to describe such systems. We demonstrate an analytical solution for the linear taper and the piecewise linear dispersion and show that the solution in this case resembles that of an optical lens in paraxial approximation. In particular, the spatial distribution of the focused light represents the Fourier transform of the signal at the input.
We experimentally demonstrate that a new nanolens of designed plasmonic subwavelength aperture can focus light to a single-line with its width beyond the diffraction limit that sets the smallest achievable line width at half the wavelength. The measu rements indicate that the effect of the near-field on the light focused is negligible in the intermediate zone of 2 < kr < 4 where the line-width is smaller than the limit. Thus, as a verification of theoretical prediction, the fields focused are radiative and with a momentum capable of propagating to the far zone as concerned by the limit.
We investigate the emission of single photons from CdSe/CdS dot-in-rods which are optically trapped in the focus of a deep parabolic mirror. Thanks to this mirror, we are able to image almost the full 4$pi$ emission pattern of nanometer-sized element ary dipoles and verify the alignment of the rods within the optical trap. From the motional dynamics of the emitters in the trap we infer that the single-photon emission occurs from clusters comprising several emitters. We demonstrate the optical trapping of rod-shaped quantum emitters in a configuration suitable for efficiently coupling an ensemble of linear dipoles with the electromagnetic field in free space.
The efficient delivery of light energy is a prerequisite for non-invasive imaging and stimulating of target objects embedded deep within a scattering medium. However, injected waves experience random diffusion by multiple light scattering, and only a small fraction reaches the target object. Here we present a method to counteract wave diffusion and to focus multiplescattered waves to the deeply embedded target. To realize this, we experimentally inject light to the reflection eigenchannels of a specific flight time where most of the multiple-scattered waves have interacted with the target object and maximize the intensity of the returning multiple-scattered waves at the selected time. For targets that are too deep to be visible by optical imaging, we demonstrated a more than 10-fold enhancement in light energy delivery in comparison with ordinary wave diffusion cases. This work will lay a foundation for enhancing the working depth of imaging, sensing, and light stimulation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا