ﻻ يوجد ملخص باللغة العربية
The efficient delivery of light energy is a prerequisite for non-invasive imaging and stimulating of target objects embedded deep within a scattering medium. However, injected waves experience random diffusion by multiple light scattering, and only a small fraction reaches the target object. Here we present a method to counteract wave diffusion and to focus multiplescattered waves to the deeply embedded target. To realize this, we experimentally inject light to the reflection eigenchannels of a specific flight time where most of the multiple-scattered waves have interacted with the target object and maximize the intensity of the returning multiple-scattered waves at the selected time. For targets that are too deep to be visible by optical imaging, we demonstrated a more than 10-fold enhancement in light energy delivery in comparison with ordinary wave diffusion cases. This work will lay a foundation for enhancing the working depth of imaging, sensing, and light stimulation.
The recent advent of wave-shaping methods has demonstrated the focusing of light through and inside even the most strongly scattering materials. Typically in wavefront shaping, light is focused in an area with the size of one speckle spot. It has bee
Our everyday experience teaches us that the structure of a medium strongly influences how light propagates through it. A disordered medium, e.g., appears transparent or opaque, depending on whether its structure features a mean free path that is larg
Fluorescence microscopy is widely used in biological imaging, however scattering from tissues strongly limits its applicability to a shallow depth. In this work we adapt a methodology inspired from stellar speckle interferometry, and exploit the opti
The inverse scattering problem, whose goal is to reconstruct an unknown scattering object from its scattered wave, is essential in fundamental wave physics and its wide applications in imaging sciences. However, it remains challenging to invert multi
The optical medium analogy of a radiation field generated by either an exact gravitational plane wave or an exact electromagnetic wave in the framework of general relativity is developed. The equivalent medium of the associated background field is in