ﻻ يوجد ملخص باللغة العربية
Kinship verification aims to identify the kin relation between two given face images. It is a very challenging problem due to the lack of training data and facial similarity variations between kinship pairs. In this work, we build a novel appearance and shape based deep learning pipeline. First we adopt the knowledge learned from general face recognition network to learn general facial features. Afterwards, we learn kinship oriented appearance and shape features from kinship pairs and combine them for the final prediction. We have evaluated the model performance on a widely used popular benchmark and demonstrated the superiority over the state-of-the-art.
Kinship verification from facial images has been recognized as an emerging yet challenging technique in many potential computer vision applications. In this paper, we propose a novel cross-generation feature interaction learning (CFIL) framework for
Kinship verification aims to find out whether there is a kin relation for a given pair of facial images. Kinship verification databases are born with unbalanced data. For a database with N positive kinship pairs, we naturally obtain N(N-1) negative p
In this paper, we propose a graph-based kinship reasoning (GKR) network for kinship verification, which aims to effectively perform relational reasoning on the extracted features of an image pair. Unlike most existing methods which mainly focus on ho
In this paper, we investigate the problem of facial kinship verification by learning hierarchical reasoning graph networks. Conventional methods usually focus on learning discriminative features for each facial image of a paired sample and neglect ho
Learning-based methods are believed to work well for unconstrained gaze estimation, i.e. gaze estimation from a monocular RGB camera without assumptions regarding user, environment, or camera. However, current gaze datasets were collected under labor