ﻻ يوجد ملخص باللغة العربية
We consider three mathematically equivalent variants of the conjugate gradient (CG) algorithm and how they perform in finite precision arithmetic. It was shown in [{em Behavior of slightly perturbed Lanczos and conjugate-gradient recurrences}, Lin.~Alg.~Appl., 113 (1989), pp.~7-63] that under certain conditions the convergence of a slightly perturbed CG computation is like that of exact CG for a matrix with many eigenvalues distributed throughout tiny intervals about the eigenvalues of the given matrix, the size of the intervals being determined by how closely these conditions are satisfied. We determine to what extent each of these variants satisfies the desired conditions, using a set of test problems and show that there is significant correlation between how well these conditions are satisfied and how well the finite precision computation converges before reaching its ultimately attainable accuracy. We show that for problems where the width of the intervals containing the eigenvalues of the associated exact CG matrix makes a significant difference in the behavior of exact CG, the different CG variants behave differently in finite precision arithmetic. For problems where the interval width makes little difference or where the convergence of exact CG is essentially governed by the upper bound based on the square root of the condition number of the matrix, the different CG variants converge similarly in finite precision arithmetic until the ultimate level of accuracy is achieved, although this ultimate level of accuracy may be different for the different variants. This points to the need for testing new CG variants on problems that are especially sensitive to rounding errors.
Results of porting parts of the Lattice Quantum Chromodynamics code to modern FPGA devices are presented. A single-node, double precision implementation of the Conjugate Gradient algorithm is used to invert numerically the Dirac-Wilson operator on a
The Gaver-Stehfest algorithm is widely used for numerical inversion of Laplace transform. In this paper we provide the first rigorous study of the rate of convergence of the Gaver-Stehfest algorithm. We prove that Gaver-Stehfest approximations conver
In this paper, we present two algorithms based on the Froidure-Pin Algorithm for computing the structure of a finite semigroup from a generating set. As was the case with the original algorithm of Froidure and Pin, the algorithms presented here produ
The ESA space astrometry mission Gaia, planned to be launched in 2013, has been designed to make angular measurements on a global scale with micro-arcsecond accuracy. A key component of the data processing for Gaia is the astrometric core solution, w
We study the alternating algorithm for the computation of the metric projection onto the closed sum of two closed subspaces in uniformly convex and uniformly smooth Banach spaces. For Banach spaces which are convex and smooth of power type, we exhibi