ﻻ يوجد ملخص باللغة العربية
In this paper, we present two algorithms based on the Froidure-Pin Algorithm for computing the structure of a finite semigroup from a generating set. As was the case with the original algorithm of Froidure and Pin, the algorithms presented here produce the left and right Cayley graphs, a confluent terminating rewriting system, and a reduced word of the rewriting system for every element of the semigroup. If $U$ is any semigroup, and $A$ is a subset of $U$, then we denote by $langle Arangle$ the least subsemigroup of $U$ containing $A$. If $B$ is any other subset of $U$, then, roughly speaking, the first algorithm we present describes how to use any information about $langle Arangle$, that has been found using the Froidure-Pin Algorithm, to compute the semigroup $langle Acup Brangle$. More precisely, we describe the data structure for a finite semigroup $S$ given by Froidure and Pin, and how to obtain such a data structure for $langle Acup Brangle$ from that for $langle Arangle$. The second algorithm is a lock-free concurrent version of the Froidure-Pin Algorithm.
A family $mathcal L$ of subsets of a set $X$ is called linked if $Acap B eemptyset$ for any $A,Binmathcal L$. A linked family $mathcal M$ of subsets of $X$ is maximal linked if $mathcal M$ coincides with each linked family $mathcal L$ on $X$ that con
This note proves a generalisation to inverse semigroups of Anisimovs theorem that a group has regular word problem if and only if it is finite, answering a question of Stuart Margolis. The notion of word problem used is the two-tape word problem -- t
As an appropriate generalisation of the features of the classical (Schein) theory of representations of inverse semigroups in $mathscr{I}_{X}$, a theory of representations of inverse semigroups by homomorphisms into complete atomistic inverse algebra
Brauer and Fowler noted restrictions on the structure of a finite group G in terms of the order of the centralizer of an involution t in G. We consider variants of these themes. We first note that for an arbitrary finite group G of even order, we hav
We present a survey of results on profinite semigroups and their link with symbolic dynamics. We develop a series of results, mostly due to Almeida and Costa and we also include some original results on the Schutzenberger groups associated to a uniformly recurrent set.