ترغب بنشر مسار تعليمي؟ اضغط هنا

Stronger Constraints on the Evolution of the $M_{rm{BH}}-sigma_*$ Relation up to $zsim0.6$

123   0   0.0 ( 0 )
 نشر من قبل Remington Sexton
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We revisit the possibility of redshift evolution in the $M_{rm{BH}}-sigma_*$ relation with a sample of 22 Seyfert 1 galaxies with black holes (BHs) in the mass range $10^{6.3}-10^{8.3}~M_odot$ and redshift range $0.03<z<0.57$ with spectra obtained from spatially resolved Keck/Low-Resolution Imaging Spectrometer observations. Stellar velocity dispersions were measured directly from the Mg Ib region, taking into consideration the effect of Fe II contamination, active galactic nucleus (AGN) dilution, and host-galaxy morphology on our measurements. BH masses are estimated using the H$beta$ line width, and the luminosity at 5100 $overset{lower.5emcirc}{mathrm{A}}$ is estimated from surface brightness decomposition of the AGN from the host galaxy using high-resolution imaging from the Hubble Space Telescope. Additionally, we investigate the use of the [O III]$lambda5007$ emission line width as a surrogate for stellar velocity dispersion, finding better correlation once corrected for Fe II contamination and any possible blueshifted wing components. Our selection criteria allowed us to probe lower-luminosity AGNs and lower-mass BHs in the non-local universe than those measured in previous single-epoch studies. We find that any offset in the $M_{rm{BH}}-sigma_*$ relation up to $zsim0.6$ is consistent with the scatter of local BH masses, and address the sources of biases and uncertainties that contribute to this scatter.

قيم البحث

اقرأ أيضاً

We present high resolution spectroscopy taken with the Keck Echellete Spectrograph and Imager to measure stellar velocity dispersions for eight active dwarf galaxies ($M_{ast}<3times10^{9}~M_{odot}$) with virial black hole masses. We double the numbe r of systems in this stellar mass regime with measurements of both black hole mass ($M_{rm BH}$) and stellar velocity dispersion ($sigma_{ast}$), and place them on the $M_{rm BH}-sigma_{ast}$ relation. The tight relation between $M_{rm BH}$ and $sigma_{ast}$ for higher mass galaxies is a strong piece of evidence for the co-evolution of BHs and their host galaxies, but it has been unclear whether this relation holds in the dwarf galaxy regime. Our sample is in good agreement with the extrapolation of the $M_{rm BH}-sigma_{ast}$ relation to low BH/galaxy masses, suggesting that the processes which produce $M_{rm BH}-sigma_{ast}$ can also operate in dwarf galaxies. These results provide important constraints for massive black hole seed formation models and models exploring the impact of AGN feedback in dwarf galaxies.
We present a re-calibration of the $M_{BH}-sigma_{star}$ relation, based on a sample of 16 reverberation-mapped galaxies with newly determined bulge stellar velocity dispersions ($sigma_{star}$) from integral-field spectroscopy (IFS), and a sample of 32 quiescent galaxies with publicly available IFS. For both samples, $sigma_{star}$ is determined via two different methods that are popular in the literature, and we provide fits for each sample based on both sets of $sigma_{star}$. We find the fit to the AGN sample is shallower than the fit to the quiescent galaxy sample, and that the slopes for each sample are in agreement with previous investigations. However, the intercepts to the quiescent galaxy relations are notably higher than those found in previous studies, due to the systematically lower $sigma_{star}$ measurements that we obtain from IFS. We find that this may be driven, in part, by poorly constrained measurements of bulge effective radius ($r_{e}$) for the quiescent galaxy sample, which may bias the $sigma_{star}$ measurements low. We use these quiescent galaxy parameterizations, as well as one from the literature, to recalculate the virial scaling factor $f$. We assess the potential biases in each measurement, and suggest $f=4.82pm1.67$ as the best currently available estimate. However, we caution that the details of how $sigma_{star}$ is measured can significantly affect $f$, and there is still much room for improvement.
Strong scaling relations between host galaxy properties (such as stellar mass, bulge mass, luminosity, effective radius etc) and their nuclear supermassive black holes mass point towards a close co-evolution. In this work, we first review previous ef forts supporting the fundamental importance of the relation between supermassive black hole mass and stellar velocity dispersion ($M_{rm BH}$-$sigma_{rm e}$). We then present further original work supporting this claim via analysis of residuals and principal component analysis applied to some among the latest compilations of local galaxy samples with dynamically measured supermassive black hole masses. We conclude with a review of the main physical scenarios in favour of the existence of a $M_{rm BH}$-$sigma_{rm e}$ relation, with a focus on momentum-driven outflows.
The $M_{BH}$ - $sigma_{star}$ relation is considered a result of co-evolution between the host galaxies and their super-massive black holes. For elliptical-bulge hosting inactive galaxies, this relation is well established, but there is still a debat e whether active galaxies follow the same relation. In this paper, we estimate black hole masses for a sample of 19 local luminous AGNs (LLAMA) in order to test their location on the $M_{BH}$ - $sigma_{star}$ relation. Super-massive black hole masses ($M_{BH}$) were derived from the broad-line based relations for H$alpha$, H$beta$ and Pa$beta$ emission line profiles for the Type 1 AGNs. We compare the bulge stellar velocity dispersion ($sigma_{star}$) as determined from the Ca II triplet (CaT) with the dispersion measured from the near-infrared CO (2-0) absorption features for each AGN and find them to be consistent with each other. We apply an extinction correction to the observed broad line fluxes and we correct the stellar velocity dispersion by an average rotation contribution as determined from spatially resolved stellar kinematic maps. The H$alpha$-based black hole masses of our sample of AGNs were estimated in the range 6.34 $leq$ $log{M_{BH}}$ $leq$ 7.75 M$_odot$ and the $sigma_{star CaT}$ estimates range between 73 $leq$ $sigma_{star CaT}$ $leq$ 227 km s$^{-1}$. From the so-constructed $M_{BH}$ - $sigma_{star}$ relation for our Type 1 AGNs, we estimate the black hole masses for the Type 2 AGNs and the inactive galaxies in our sample. In conclusion, we find that our sample of local luminous AGNs is consistent with the $M_{BH}$ - $sigma_{star}$ relation of lower luminosity AGNs and inactive galaxies, after correcting for dust extinction and the rotational contribution to the stellar velocity dispersion.
62 - Z.Q. Zhou 2020
Liu and collaborators recently proposed an elliptical accretion disk model for tidal disruption events (TDEs). They showed that the accretion disks of optical/UV TDEs are large and highly eccentric and suggested that the broad optical emission lines with complex and diverse profiles originate in the cool eccentric accretion disk of random inclination and orientation. In this paper, we calculate the radiation efficiency of the elliptical accretion disk and investigate the implications for the observations of TDEs. We compile observational data for the peak bolometric luminosity and total radiation energy after peak brightness of 18 TDE sources and compare these data to the predictions from the elliptical accretion disk model. Our results show that the observations are consistent with the theoretical predictions and that the majority of the orbital energy of the stellar debris is advected into the black hole (BH) without being converted into radiation. Furthermore, we derive the masses of the disrupted stars and the masses of the BHs of the TDEs. The BH masses obtained in this paper are also consistent with those calculated with the $M_{rm BH} - sigma_*$ relation. Our results provide an effective method for measuring the masses of BHs in large numbers of TDEs to be discovered in ongoing and next-generation sky surveys, regardless of whether the BHs are located at the centers of galactic nuclei or wander in disks and halos.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا