ﻻ يوجد ملخص باللغة العربية
Arrow contraction applied to a tropical diagram of probability spaces is a modification of the diagram, replacing one of the morphisms by an isomorphims, while preserving other parts of the diagram. It is related to the rate regions introduced by Ahlswede and Korner. In a companion article we use arrow contraction to derive information about the shape of the entropic cone. Arrow expansion is the inverse operation to the arrow contraction.
After endowing the space of diagrams of probability spaces with an entropy distance, we study its large-scale geometry by identifying the asymptotic cone as a closed convex cone in a Banach space. We call this cone the tropical cone, and its elements
We define a natural operation of conditioning of tropical diagrams of probability spaces and show that it is Lipschitz continuous with respect to the asymptotic entropy distance.
In this paper we initiate the study of tropical Voronoi diagrams. We start out with investigating bisectors of finitely many points with respect to arbitrary polyhedral norms. For this more general scenario we show that bisectors of three points are
We consider a class of nonlinear mappings $mathsf{F}_{A,N}$ in $mathbb{R}^N$ indexed by symmetric random matrices $Ainmathbb{R}^{Ntimes N}$ with independent entries. Within spin glass theory, special cases of these mappings correspond to iterating th
In this paper we revisit the results of Loynes (1962) on stability of queues for ergodic arrivals and services, and show examples when the arrivals are bounded and ergodic, the service rate is constant, and under stability the limit distribution has larger than exponential tail.